# Stresses in the curved beam under loads normal to the plane of its axis 

Robert Burrus Buckner Moorman<br>Iowa State College

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Civil Engineering Commons

## Recommended Citation

Moorman, Robert Burrus Buckner, "Stresses in the curved beam under loads normal to the plane of its axis " (1937). Retrospective Theses and Dissertations. 14122.
https://lib.dr.iastate.edu/rtd/14122

## INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 800-521-0600


## NOTE TO USERS

This reproduction is the best copy available.

UMI

# STSESGES IN THE OURVED BEAS <br> UNDER LOADS NORMAL TO THE PLANE OF ITS AXIS 

$b y$

Robert Burrus Buckner Hoorman
$\therefore$ Thesis Submitted to the Graduate Faculty for the Degree of

DOCTOR OF PHILOSOPHY

Major subject Structural Enginoering

## Approved:

Signature was redacted for privacy.
In chareg of llatyoy work
Signature was redacted for privacy.
Head of Major Department
Signature was redacted for privacy.
Dean of Gracuate college


## UMI Number: DP13380

## UMi

UMI Microform DP13380
Copyright 2005 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest information and Learning Company
300 North Zeeb Road
P.O. Box 1346

Ann Arbor, MI 48106-1346

    T \(\because \because \%\)
    TABLE OF CONTENTS Page
I. INTRODUCTION ..... 8
II. HISTORICAL ..... 11
III. ANALYSIS OF CUFVED BEAM BY METHOD OP VORK INVOLVING ONLY BENDING MOIENST, TWISTING MOMENP AND VERTICAL SHEAR ..... 14
A. General ..... 14
B. Notation ..... 15
O. Assumptions ..... 17
D. Derivation. ..... 17
IV. EXPERIMENTS ON A CURVED ROD OF CITBCULAR- ARC PLAN ..... 30
A. Tests ..... 30
B. Analytical. ..... 33
C. Discussion. ..... 56
V. ANALYSIS OF CIRCULGR-ARC CURVED EEAM OF I-FORM ..... 57
A. General ..... 57
B. Notation ..... 58
C. Rssumptions ..... 60
D. Derivation. ..... 60
VI. EXPERTMENIS ON AN I-BEAM BENT TO A SEMI- CIRCIE ..... 73
A. General ..... 73
B. Materials ..... 73
C. Constants ..... 75
T5689
D. Mothod of Procedure . . . . 77
E. Annealing of I-beam . . . . 79
F. Results . . . . . . . 90
VII. CONCLUSIONS . . . . . . . . . 104
A. Analysis of Curved Boam by Method of Work Involving only Bending Moment, Twisting Moment and Shear, with Tests on a Curved Rod. . . 104
B. Analysis of the Circular-Arc Beam of I-Form and Tests on the I-Beam . 104
VIII. SUMMARY. . . . . . . . . . 107
IX. IITERATURE CITED . . . . . . . 108
X. $\Lambda$ CKNONLETDGMENT . . . . . . . . 110 .

APPENDIX $A$. . . . . . . . . 111
APFENDIX B . . . . . . . . . 115
I. Computations of $x$ and $y$ Distances. . . 34
II. Computations of Values for Influence Lines, Bending Moment, Twisting Moment and Shear . . . . . . . .
III. Values of Influence Ordinates for Bending Moment and Twisting Moment at QuarterPoint - Arc $180^{\circ}$. . . . . . . 43
IV. Values of Influence Ordinates for Bending Moment and Twisting Moment at Quarterm Point - Arc $144^{\circ}$44
V. Constants of Integration in Terms of $P$ to be used in Equation (54) . . . . 76
VI. Deflections of Center of Beam Due to a Load of 500 pounds.85

## LIST OF FIGURES

Page

1. Left Segment of Beam ..... 18
2. Distances - $u$ and $v$ ..... 21
3. Right Segment of Beam. ..... 21
4. Curved Rod in Place ..... 32
5. Influence Line for Bending Moment at \& - Arc $180^{\circ}$ ..... 45
6. Influence Line for Twisting Momert at \& -
Arc $180^{\circ}$. ..... 46
7. Influence Line for Shear at \& - Arc $180^{\circ}$ ..... 47
8. Influence Line for Bending Moment at Quarter-Point - Arc $180^{\circ}$. . . . . . . . 489. Influence Line for Twisting Moment at Quarter-Point - Arc $180^{\circ}$. . . . . . . . 49
9. Influence Line for Bending Moment at $\mathbb{q}$ - Arc $144^{\circ}$. ..... 50
10. Influence Line for Twisting Moment at $\mathbb{q}$ -Arc $144^{\circ}$. . . . . . . . . . 51
11. Influence tine for Shear at \& - Arc $144^{\circ}$ ..... 52
12. Influence Line for Bending Moment at Quarter-Point - Are $144^{\circ}$.5314. Influence Line for Twisting Moment at quarter-
Point - Arc $144^{\circ}$. ..... 54
13. Other Test Data - Arc $180^{\circ}$ ..... 55
14. Forces Acting on Elemental Length of I-Beam ..... 61

Page
17. Displacementa $v, ~ y$ and $z . \quad . \quad . \quad . \quad . \quad .64$
18. Relative Displacements of Points 1 and 2. . . 65 19. 9 and 2e. . . . . . . . . . . 66
20. General View of Experimential Set-up . . . . 74
21. Hugenberger Tensometers in Place . . . . 78
22. Coneral View During Annealing of Berm . . . 81 23. Outer Fiber stress TI for $\alpha=90^{\circ}, \beta=90^{\circ}$. . 86 24. Outer Fiber stress ro for $\alpha=90^{\circ}, \beta=90^{\circ}$. . 87 25. Outer Fiber stress BI for $\alpha=90^{\circ}, \beta=90^{\circ}$. . 88 26. Outer Fibor stross $B 0$ for $\alpha=90^{\circ}, \beta=90^{\circ}$. . 89 27. Outer Fiber Stress II for $\alpha=75^{\circ}, \beta=105^{\circ}$. . 90 28. Outer Fiber Stress To for $\alpha=75^{\circ}, \beta=105^{\circ}$. . 91 29. Outer Fiber Stress EI for $\alpha=75^{\circ}, \beta=105^{\circ}$. . 92 30. Outer Fiber Stress Bo for $\alpha=75^{\circ}, \beta=105^{\circ}$. . 93 31. Outer Fiber Stress TI for $\alpha=45^{\circ}, \beta=135^{\circ}$. . 94 32. Outer Fiber stress IO for $\alpha=45^{\circ}, \beta=135^{\circ}$. . 95 33. Outer Fiber stress BI for $\alpha=45^{\circ}, \beta=135^{\circ}$. . 96 34. Outor Fiber stress $B 0$ for $\alpha=45^{\circ}, \beta=135^{\circ}$. 97 35. Values of $z$ for $\alpha=90^{\circ}$ and $\beta=90^{\circ}$. . . 98 36. Values of $z$ for $\alpha=75^{\circ}$ and $\beta=105^{\circ}$. . . 99 37. Values of a for $\alpha=45^{\circ}$ and $\beta=135^{\circ}$. . . 100 38. Twisting Moment - $\alpha=90^{\circ}$ and $\beta=90^{\circ}$. . 101 39. Twisting Moment - $\alpha=75^{\circ}$ and $\beta=105^{\circ}$. . 102
$-7-$
Page
40. Twisting Moment - $\alpha=45^{\circ}$ and $\beta=135^{\circ}$ ..... 103
41. Change in Curvature ..... 112
42. Outer Fiber Stress TI for Quarter-point Loads ..... 116
43. Quter Fiber Stress TO for Quarter-Point Loads ..... 117
44. Outer Fiber Stress BI for Quarter-Point Loads ..... 118
45. Outer Fiber stress BO for Quarter-Point Loads ..... 119

## I. INHRODUCTION

The horizontally curved beam has a variety of uses such as in the design of elevated tanks and belconies of theatres and auditoriums. According to Young and Hughes (15) bridge girders have been built of circularmare plan. The principles of onalysis of the horizontally curved beam may be applied to the arch rib with a lateral wind 1oad. It has also been found expedient to use the curved beam for corners of buildings where it is desired to omit columns.

The problem of the curved beam is a three dimensional one. It involves bending moment, torque and shear. A general solution which could cover all cases would be very complicated. One complicating factor is the measure of torsional rigidity. Another complication is introduced by the fact that for certain cross-sections of beam, particularly those of I-form, there are bending moments induced in planes parallel to the plane of the axis of the beam which cannot readily be determined by the use of statics. If the simplifying assumption $1 s$ made that the
unit angle of twist varies as the total torque, regardiess of the length of the member, then a general solution may be expedited. There remains then only the bending moment, torque and shear for which to solve. However, an analysis of this type is not applifable to a curved beam when its shape is such that additional vending moments may be induced in planes parallel to the plane of the axis of the beam.

A special solution is necessary for a curved beam of I crossmsection. In this case there exists a bending moment in the plane of each of the flanges. The bending moment in one flange is equal to the bending moment in the other flange but of opposite alen. When analyzing the beam, If we imagine the beam cut at any section these two moments cancel the effects of one another. Consequentily, it is necessary to depend upon displacements when solving for these induced bending moments. There is also a shear which accompanies each of those moments. This shoar contributes to the total twisting moment in that the total twisting moment is equal to this shear times the depth of the beam, or more properly the distance between the centroids of the flanges, plus the pure torsion. The curved beam of $I$ cross-section also has bending moment, twisting moment and vertical shear acting upon 1t.

The objectives of this thesis are, first, to present an analysis for a curved beam of any plan in which there is littie or no bending moment induced in planes paraliel to the plane of the uxis of the beam; second, to present an analysis of the circular-arc beam of $I$ cross-section which is loaded by single concentrated loads; and third, to present the results of experiments for comparison with the algebraic analyses.

In connection with these analyses experimental investigations were conducted on a curved round rod of steel and a curved I-beam. The I-beam was bent cold and tested, both in the unannesied and annealed conditions.

## II. IIISTORICAJ

The problem of the beam curved in plan has been troated by a number of investigators. The first work on the curved beam was by Grashof (5). He dealt with the circular ring cut at a section with two equal and opposite loads applied at the cut ends.

The majority of investigators have used the circulararc for the plan of the beam and have assumed that the unit angle of twist varies directiy as the total twisting moment, regerdiess of the shape of the cross-section. Mayer (9) treated the firder of half-circular plan with unsymmetrical loads and a uniform load. Federhof (3) did the same but extended the work to include influence lines. Gibson and Ritchie (4) published a book on the circulararc bow girder in which are eiven curves of bending moments and twisting moments to be used for various values of subtended arc. They presented the results of experiments conducted on a number of commercial steel sections which were tested in order to determine the torsional rigidity of these sections. Kannenberg (7) treated the circular-
arc beam on which the loads were symmetrically placed. St. Hessler (12) worked on the circular-arc curved beam with fixed ends and loaded with uniform and symmmetrlcally placed loads. He also derived formulas for the analysis of circular-arc beams with uniform loads in which the beams were on three and four equally spaced supports (13).

Worch (16) treated examples of curved beams made up of straight pieces and having several intermediate supports. Hailer (6) analyzed a special case of a beam whose plan was made up of a stralght piece and a quadrant of a circle and loaded uniformly, Oesterblom (10) treated the circular-arc girder with unfformly distributed loads and presented curves of bending moment and twisting moment for various values of the elastic constants.

Pippard and Barrow (11) treated the curved girder with fixed ends. The curve of the girder could have any plan form, i.e., it was not limited to the circular-arc shape. The procedure recommended for the analysis of the non-circular shape involved the use of a planimeter or Simpson's rule for determining areas. The first analysis developed in this thesis eliminates this inconvenience and expresses the bending moment, twisting moment and shear in general torma.

All of the work mentioned above neglected the special treatment necessary for curved beams of I cross-section. Andrée (I) was the first to treat the beam of Imform. Unold (14) published the most complete treatment of circular-arc curved ginders and included a summary of the work done on this problem prior to 1922. In the second aralysis of this thesia his treatment of the circular-arc beam of I cross-section has been extended to apply to the beom with unsymmetrical concentrated loads and experiments were conducted for comparison with the analysis.

An uncertainty in a problem of this nature is the determination of a suitable torsion frotor for irregular cross-sections. Along this line experiments have been conducted by Ritchie (4) and by Young and Hughes (15). An attempt was made by these investigators to determine a suitable relation between the experimental value of the torsion factor and the polar moment of inertia of the sections tested, but the results were not entirely satisfactory. Lyse and Johnston (8) conducted an extensive investigation on commercial steel sections in which the experimental values of the torsion factor were compared with the results of worls using the membrane analogy. This investigation was found to be quite satisfactory and consequentiy the information has been made available to the engineering profession in a steel handbook (2).
III. ANAIYSIS OF CURVED BEAM BY MITHOD OF VORK INVOLVING ONJT BENDING MOMENT, TWISTING MOMENT AND VERTIGAL SHEAR
A. General

The analysis developed in this chapter follows someWhat the procedure presented by Plppard and Barrow (11), but the solutions are extended to include formulas for bending moment, twistimg moment and shear in general terms. Where it is possible terms are combined in order to expedite the work necessary for practical anplication. The formulas derived in this chapter are applicable to a curved beam with fixed ends and a plan of any shape. Needless to say, the application becomes simplified fox the case in which the plan of the beam is bymmetrical. In solving for the redundants we imagine the beam cut at any section, $C$, (see Fig. 1) and such forces are applied as to again produce continuity. In this case the beam is cut alone the YZ-plane. At the cut end are placed a bonding moment, twisting moment and shoar, deslgnated by the charaoters $M_{c}, T_{c}$ and $V_{c}$, respectively.

The equation for work 1 s written and by taking partial derivatives of the work with respect to $M_{c}, T_{c}$ and $V_{c}$ and equating each partial derivative to zero, three equations are obtained involving the three unknowns. In the case of the unsymmetrical beam the section, C, should be taken at the right support. Then all terms with the subsoript $I$ would vanish, as they are used to indicate functions on the right segment of the beam. The bending moment, twisting moment and shear at the right support would then be given by the formulas for $M_{c}, T_{c}$ and $V_{c}$, respectively.
B. Notation

The followine notation is used in Chapters III and IV.

The subscripts $L$ and $R$ designate the left segment and the right gegment, reapectively, of the beam. $\theta$ angle which the tangent to the left segment of the beam axis makes with the Y-axis (Fig. Ib).
$\varnothing$ angle, corresponding to $\theta$, for the right segment of the beam.
$M_{C}, T_{c}$ and $V_{c}$ bexding moment, twisting moment and shear, respectively, at 0 necessary to produce continuity.
$G$ modulus of elastjcity in shear.
I a torsion constant; polar moment of inertla for olrcular section.

EI flexural rigidity.
GK torsional rigidity, distance from $C$ to section under consideration in $X$-direction.
$y$ distance from $C$ to section under consideration in X-direction.

W work.
C. Assumptions

The following assumptions are made.

1. Hooke's law applies.
2. The deformations are small so that it may be said (approximately) for angular deformations that $\alpha=\sin \alpha=$ tan $\alpha$, where $\alpha$ is the angular deformation.
3. The angle of twist per unit length of beam varies as $\frac{T}{G K}$.
4. The angle of bending per unit length of beam varies as $\frac{M}{E I}$.

## D. Derivation

Figure la, a view of the left segment of the beam, shows the positions of the $\mathrm{X}-\mathrm{y}$, Y and Z -axes. The $\mathrm{YZ}-$ plane cuts the beam at $C$. At the cut end the positive direotions of bending moment, twisting moment and shear are indicated.

Flgure lb shows the line diagram of the left segment of the beam with the angle $\theta$ and $x$ - and $y$ - diatances.

In oxder to express the bending and twisting moments, due to the ghear $V_{C}$, at any section in terms of the


Fig. 1. Left Segment of Beam.
coordinates $x$ and $J$ it is necessary to express the distances. $u$ and $v(F i E .1 b)$ in terms of $x$ and $y$. The distance $u$ is from $C$ to the section under consideration along a tangent at the section. The perpendicular distance from $C$ to the tangent at the section is taken as $v$.

Figure 2 shows the portion of the beam between $C$ and any section. From the figure we see that

$$
\begin{aligned}
V & =A C=A B-B C=D E-B C \\
& =x \cos \theta-J \sin \theta
\end{aligned}
$$

and

$$
\begin{aligned}
\mathfrak{u} & =A F=A D+D F=B E+D F \\
& =x \sin \theta+y \cos \theta
\end{aligned}
$$

Now, the bending moment and twisting moment at any point along the left segment of the axis of the beam may be expressed as fiollows;

$$
\begin{align*}
M_{L}= & M_{c} \sin \theta+V_{c} u+T_{c} \cos \theta+m_{x_{L}} \sin \theta+m_{y_{L}} \cos \theta \\
= & M_{c} \sin \theta+V_{c}(x \sin \theta+y \cos \theta)+r_{c} \cos \theta \\
& +m_{x_{I}} \sin \theta+m_{y_{L}} \cos \theta \tag{I}
\end{align*}
$$

and

$$
T_{L}=-M_{C} \cos \theta-V_{C} v+T_{c} \sin \theta-m_{x_{L}} \cos \theta+m_{y_{L}} \sin \theta
$$



Fig. 2. Distances u and v.


Fig. 3. Right Segment of Beam.

$$
\begin{align*}
= & -M_{c} \cos \theta-V_{c}(x \cos \theta-y \sin \theta)+T_{c} \sin \theta \\
& -m_{x_{L}} \cos \theta+m_{y_{L}} \sin \theta \tag{2}
\end{align*}
$$

In a similar manner the expressions for bending moment and twistine moment may be written for the right segment of the beam. Figure 3 shows the right segment of the beam with the positive directions of $M_{c}, T_{c}$ and $V_{c}$ indicated. In order to have continuity the value of Mc on the left segment of the beam must be equal to the value on the right segment. The values of $T_{c}$ and $V_{C}$ on the left gegment of the beam must be equal to those on the right gegment but of opposite sign. The expressions for bending moment and twisting moment for the right segment of the beam may be written as follows:

$$
\begin{align*}
M_{R} & =M_{c} \sin \phi-V_{c} u-T_{c} \cos \phi+m_{x_{R}} \sin \phi+m_{y_{k}} \cos \phi \\
& =M_{c} \sin \phi-V_{c}(1+\sin \phi+y \cos \phi)-T_{c} \cos \phi+m_{x_{e}} \sin \phi+m_{y_{R}} \cos \phi \tag{3}
\end{align*}
$$

and

$$
\begin{align*}
T_{R} & =-M_{c} \cos \phi+V_{c} V-T_{c} \sin \phi-m_{x_{R}} \cos \phi+m_{y_{p}} \sin \phi \\
& \left.=-M_{c} \cos \phi+V_{c}+\cos \phi-y \sin \phi\right)-T_{c} \sin \phi-m_{x_{e}} \cos \phi+m_{y_{R}} \sin \phi \tag{4}
\end{align*}
$$

Neglecting the work of the vertical shear the equation for work may be written

$$
\begin{equation*}
W=\sum \frac{M_{2}^{2} d s}{2 E I}+\sum \frac{T_{2}^{2} d s}{2 G K}+\sum \frac{M_{R}^{2} d s}{2 E I}+\sum \frac{T_{R}^{2} d s}{2 G K} \tag{5}
\end{equation*}
$$

Then the work $W$ may be differentiated with respect to each of the variables $M_{c}, T_{c}$ and $V_{c}$, giving

$$
\begin{align*}
& \frac{\partial W}{\partial M_{c}}=\sum \frac{M_{L} d s}{E I} \frac{\partial M_{R}}{\partial M_{c}}+\sum \frac{T_{L} d s}{G K} \frac{\partial T_{L}}{\partial M_{c}}+\sum \frac{M_{R} d s}{E I} \frac{\partial M_{R}}{\partial M_{c}}+\sum \frac{T_{R} d s}{G K} \frac{\partial T_{R}}{\partial M_{c}}  \tag{6}\\
& \frac{\partial W}{\partial T_{c}}=\sum \frac{M_{L} d s}{E I} \frac{\partial M_{L}}{\partial T_{c}}+\sum \frac{T_{L} d s}{G K} \frac{\partial T_{L}}{\partial T_{c}}+\sum \frac{M_{R} d s}{E I} \frac{\partial M_{R}}{\partial T_{c}}+\sum \frac{T_{R} d s}{G K} \frac{\partial T_{R}}{\partial T_{c}}  \tag{7}\\
& \frac{\partial W}{\partial V_{c}}=\sum \frac{M_{L} d s}{E I} \frac{\partial M_{L}}{\partial V_{c}}+\sum \frac{T_{L} d s}{G K} \frac{\partial T_{L}}{\partial V_{c}}+\sum \frac{M_{R} d s}{E I} \frac{\partial M_{R}}{\partial V_{c}}+\sum \frac{T_{R} d s}{G K} \frac{\partial T_{R}}{\partial V_{c}} \tag{8}
\end{align*}
$$

or

$$
\begin{align*}
& \frac{\partial W}{\partial M_{c}}=\sum M_{R} \sin \theta \frac{d s}{E I}-\sum T_{L} \cos \theta \frac{d s}{G K}+\sum M_{R} \sin \phi \frac{d s}{E I}-\sum T_{R} \cos \phi \frac{d s}{G K}=0  \tag{9}\\
& \frac{\partial W}{\partial T_{c}}=\sum M_{L} \cos \theta \frac{d s}{E I}+\sum T_{L} \sin \theta \frac{d s}{G K}-\sum M_{R} \cos \phi \frac{d s}{E I}-\sum T_{R} \sin \phi \frac{d s}{G K}=0  \tag{10}\\
& \frac{\partial W}{\partial V_{c}}=\sum M_{L}(x \sin \theta+y \cos \theta) \frac{d s}{E I}-\sum T_{L}(\lambda \cos \theta-y \sin \theta) \frac{d s}{G K} \\
& -\quad-\sum M_{R}(x \sin \phi+y \cos \phi) \frac{d s}{E I}+\sum T_{R}(x \cos \phi-y \sin \phi) \frac{d s}{G K}=0 \tag{II}
\end{align*}
$$

Substituting equations (1), (2), (3) and (4) in equations (9), (10) and (11) we have
$\sum\left[M_{c} \sin \theta+V_{c}(x \sin \theta+y \cos \theta)+T_{c} \cos \theta+m_{x_{2}} \sin \theta+m_{y_{k}} \cos \theta\right] \frac{\sin \theta d s}{E I}-$
$\sum\left[M_{c} \cdot \sin \theta+V_{c}(x \sin \theta+y \cos \theta)+T_{c} \cos \theta+m_{x_{k}} \sin \theta+m_{y_{c}} \cos \theta \frac{\cos \theta d s}{E I}+\right.$
$\sum\left[M_{c} \sin \theta+V_{c}(x \sin \theta+y \cos \theta)+T_{c} \cos \theta+m_{x_{e}} \sin \theta+m_{m_{z}} \cos \theta\right](x \sin \theta+$
For symmetrical structures $\phi$ may be taken equal to $\theta$ ana $2 M_{c} \sum\left(\frac{\sin ^{2} \theta d s}{E I}+\frac{\cos ^{2} \theta d s}{G K}\right)+\sum\left(m_{x_{k}}+m_{x_{k}}\right) \sin ^{2} \theta \frac{d s}{E I}+\sum\left(m_{y_{k}}+m_{y_{k}}\right) s$
$2 V_{c} \sum\left[x \sin \theta \cos \theta\left(\frac{1}{E T}-\frac{1}{G K}\right) d s+y\left(\frac{\cos ^{2} \theta}{E T}+\frac{\sin ^{2} \theta}{G K}\right) d s\right]+2 T_{c} \sum\left(\frac{\cos ^{2} \theta}{E I}+:\right.$

$$
2 V_{c} \sum\left[(x \sin \theta+y \cos \theta)^{2} \frac{d s}{E I}+(x \cos \theta-y \sin \theta)^{2} \frac{d s}{G K}\right]+2 T_{c} \sum[\cos \theta(x \operatorname{si}
$$

Solving for $M_{c}$ from equation (15) we have

$$
M_{c}=-\frac{\sum\left(m_{x_{2}}+m_{x_{e}} /\left(\frac{\sin ^{2} \theta d s}{E I}+\frac{\cos ^{2} \theta d s}{G K}\right)+\sum\left(m_{s_{2}}+m_{y_{k}}\right) \sin \right.}{2 \sum\left(\frac{\sin ^{2} \theta d s}{E I}+\frac{\cos ^{2} \theta d s}{G K}\right)}
$$

From determinants we have

$$
\begin{aligned}
& \left.V_{c}=\frac{\left\{-2 \sum\left[\cos \theta(x \sin \theta+y \cos \theta) \frac{d s}{E I}-\sin \theta(x \cos \theta-y \sin \theta) \frac{d}{G H}\right.\right.}{\left\{2 \sum[x \sin \theta \cos \theta\right.}\right\} \\
& V_{c}=\frac{-\left\{\sum\left[x \sin \theta \cos \theta\left(\frac{d s}{E I}-\frac{d s}{G K}\right)+y\left(\frac{\cos ^{2} \theta d s}{E T}+\frac{\sin ^{2} \theta d s}{G K}\right)\right]\right\}\left\{\sum \left[\left(m_{x_{i}}-m_{1}\right.\right.\right.}{2\left\{\sum[x \sin \theta\right.} \\
& T_{c}=\frac{-\left\{\sum\left[x \sin \theta \cos \theta\left(\frac{d s}{E I}-\frac{d s}{G K}\right)+y\left(\frac{\cos ^{2} \theta d s}{E I}+\frac{\sin ^{2} \theta d s}{G K}\right)\right]\right\}\left\{\sum \left[\left(m_{x_{-}}\right.\right.\right.}{2\left\{\sum\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{s}-\sum\left[-M_{c} \cos \theta-V_{c}(x \cos \theta-y \sin \theta)+T_{c} \sin \theta-m_{x_{L}} \cos \theta+m_{y_{L}} \sin \theta\right] \frac{\cos \theta d s}{G K}+ \\
& \underline{s}+\sum\left[-M_{c} \cos \theta-V_{c}(x \cos \theta-y \sin \theta)+T_{c} \sin \theta-m_{x_{L}} \cos \theta+m_{y_{L}} \sin \theta\right] \frac{\sin \theta d s}{G K}- \\
& 1 \theta+y \cos \theta) \frac{d s}{E I}-\sum\left[-M_{c} \cos \theta-V_{c}(x \cos \theta-y \sin \theta)+T_{c} \sin \theta-m_{x_{L}} \cos \theta+m_{g_{L}} \sin \theta\right.
\end{aligned}
$$

and the above equations may be written

$$
\begin{aligned}
& \prime \sin \theta \cos \theta \frac{d s}{E I}+\sum\left(m_{x_{L}}+m_{x_{R}}\right) \cos ^{2} \theta \frac{d s}{G K}-\sum\left(m_{y_{L}}+m_{y_{R}}\right) \sin \theta \cos \theta \frac{d s}{G K}=0 \\
& \left.+\frac{\sin ^{2} \theta}{G K}\right) d s+\sum\left(m_{x_{L}}-m_{x_{e}}\right) \sin \theta \cos \theta\left(\frac{1}{E I}-\frac{1}{G K}\right) d s+\sum\left(m_{y_{L}}-m_{y_{R}}\right)\left(\frac{\cos ^{2} \theta}{E I}+\right. \\
& \left.x \sin \theta+y \cos \theta) \frac{d s}{E I}-\sin \theta(x \cos \theta-y \sin \theta) \frac{d s}{G K}\right]+\sum\left(m_{x_{L}}-m_{x_{R}}\right)[\sin \theta(x \sin \theta+\leq
\end{aligned}
$$

$\operatorname{iin} \theta \cos \theta\left(\frac{d s}{E x}-\frac{d s}{G K}\right)$
$V_{c}=\frac{-e c+b f}{a e-d b}$ and $T_{c}=\frac{-a f+d c}{a b-d b}$ Using this form in solving for $V_{c}$ a

$$
\frac{\left.\left.1 \frac{d s}{G K}\right]\right\}\left\{\sum \left[\left(m_{x_{L}}-m_{x_{R}}\right) \sin \theta \cos \theta\left(\frac{d s}{E I}-\frac{d s}{G K}\right)+\left(m_{y_{k}}-m_{y_{R}}\right)\left(\frac{\cos ^{2} \theta d s}{E I}+\frac{\sin ^{2} \theta}{G k}\right.\right.\right.}{\left.\left.\sin \theta\left(\frac{d s}{E I}-\frac{d s}{G K}\right)+y\left(\frac{\cos ^{2} \theta d s}{E I}+\frac{\sin ^{2} \theta d s}{G K}\right)\right]\right\}\left\{2 \sum \left[\cos \theta(x \sin \theta+y \cos \theta) \frac{d s}{E I}-\sin \theta_{1}\right.\right.}
$$

$$
\left.\left.\left(-m_{x_{R}}\right) \sin \theta \cos \theta\left(\frac{d s}{E I}-\frac{\alpha^{\prime} s}{G K}\right)+\left(m_{y_{2}}-m_{y_{p}}\right)\left(\frac{\cos ^{2} \theta d s}{E I}+\frac{\sin ^{2} \theta d s}{G K}\right)\right]\right\}+\left\{\left[\left(\frac{\cos ^{2} \theta d s}{E I}+\right.\right.\right.
$$

$$
\left.\left.\sin \theta \cos \theta\left(\frac{d s}{E I}-\frac{d s}{G K}\right)+4\left(\frac{\cos ^{2} \theta d s}{E I}+\frac{\sin ^{2} \theta d s}{G K}\right)\right]\right\}^{2}-\left\{\sum \left[x ^ { 2 } \left(\frac{\sin ^{2} \theta d s}{E I}+\frac{\cos ^{2} \theta d s}{G K},\right.\right.\right.
$$

$$
\frac{\left(m_{x_{2}}-m_{x_{r}}\right) \times\left(\frac{\sin ^{2} \theta d s}{E I}+\frac{\cos ^{2} \theta d s}{G K}\right)+\left(m_{x_{L}}-m_{x_{P}}\right) y \sin \theta \cos \theta\left(\frac{d s}{E I}-\frac{d s}{G K}\right)+\left(m_{y_{L}}-m_{y_{R}}\right) \times \sin \theta \cos \theta}{\left\{\sum\left[x \sin \theta \cos \theta\left(\frac{d s}{E I}-\frac{d s}{G K}\right)+y\left(\frac{\cos ^{2} \theta d s}{E I}+\frac{\sin ^{2} \theta d s}{G K}\right)\right]\right\}^{2}-2\left\{\sum \left[x^{2}\left(\frac{\sin ^{2} \theta d s}{E I}+\frac{\cos ^{2} \theta d s}{G K}\right)\right.\right.}
$$

- 

$$
\begin{align*}
& \frac{\cos \theta d s}{G K}+\sum\left[M_{c} \sin \phi-V_{c}(x \sin \phi+y \cos \phi)-T_{c} \cos \phi+m_{x_{k}} \sin \phi+m_{y_{p}} \cos \phi\right] \frac{\sin \phi}{E I} \\
& \frac{\sin \theta d s}{G K}-\sum\left[M_{c} \sin \phi-V_{c}(x \sin \phi+y \cos \phi)-T_{c} \cos \phi+m_{x_{k}} \sin \phi+m_{y_{p}} \cos \phi\right] \frac{\cos \phi}{E I} \\
& \left.+m_{g_{L}} \sin \theta\right](x \cos \theta-y \sin \theta) \frac{d s}{G K}-\left[\left[M_{c} \sin \phi-V_{c}(x \sin \phi+y \cos \phi)-T_{c} \cos \phi+m_{x}\right.\right. \\
& =0  \tag{15}\\
& \left(\frac{\cos ^{2} \theta}{E I}+\frac{\sin ^{2} \theta}{G K}\right) d s=0 \tag{16}
\end{align*}
$$

$$
\left.(x \sin \theta+y \cos \theta) \frac{d s}{E X}+\cos \theta(x \cos \theta-y \sin \theta) \frac{d s}{G K}\right]+\sum\left(m_{y_{L}}-m_{y_{k}}\right)[\cos \theta(x \sin \theta .
$$

for $V_{c}$ and $T_{c}$ wo have

$$
\begin{aligned}
& \left.\left.\left.+\frac{\sin ^{2} \theta d s}{G K}\right)\right]\right\}+\left\{2 \sum\left(\frac{\cos ^{2} \theta d s}{E I}+\frac{\sin ^{2} \theta d s}{G K}\right)\right\}\left\{\sum \left\{\left(m_{x_{c}}-m_{x_{k}}\right) \sin \theta+\left(m_{y_{L}}-\right.\right.\right. \\
& \left.\left.\frac{s}{T}-\sin \theta(x \cos \theta-y \sin \theta) \frac{d s}{G K}\right]\right\}-\left\{2 \left[\left[(x \sin \theta+y \cos \theta)^{2} \frac{d s}{E T}+(x \cos \theta-y \sin \theta)\right.\right.\right. \\
& \left.\left.\frac{\Delta s^{2} \theta d s}{E I}+\frac{\sin ^{2} \theta d s}{G K}\right)\right\}\left\{\sum \left[\left(m_{x_{L}}-m_{x_{R}}\right) \times\left(\frac{\sin ^{2} \theta d s}{E I}+\frac{\cos ^{2} \theta d s}{G K}\right)+\left(m_{x_{L}}-m_{x_{R}}\right) y \sin \right.\right. \\
& \left.\left.\left.\frac{\cos ^{2} \theta d s}{G K}\right)+2 x y \sin \theta \cos \theta\left(\frac{d s}{E I}-\frac{d s}{G K}\right)+y^{2}\left(\frac{\cos ^{2} \theta d s}{E I}+\frac{\sin ^{2} \theta d s}{G K}\right)\right]\right\}\left\{2 \left[\left(\frac{\cos ^{2} \theta}{E I}\right.\right.\right. \\
& \left.\left.x \sin \theta \cos \theta\left(\frac{d s}{E I}-\frac{d s}{G K}\right)+\left(m_{y_{2}}-m_{y_{R}}\right) y\left(\frac{\cos ^{2} \theta d s}{E I}+\frac{\sin ^{2} \theta d s}{G K}\right)\right]\right\}+\left\{\sum \left[x^{2}\left(\frac{\sin ^{2} \theta d s}{E X}+\frac{\cos ^{2} \theta d s}{G K}\right)\right.\right. \\
& \left.\left.\left.\frac{O s^{2} \theta d s}{G K}\right)+2 x y \sin \theta \cos \theta\left(\frac{d s}{E I}-\frac{d s}{G K}\right)+y^{2}\left(\frac{\cos ^{2} \theta d s}{E I}+\frac{\sin ^{2} \theta d s}{G K}\right)\right]\right\}\left\{\left[\left(\frac{\cos ^{2} \theta d s}{E I}+\right.\right.\right.
\end{aligned}
$$

$\phi] \frac{\sin \phi d s}{E I}+\sum\left[M_{c} \cos \phi-V_{c}(x \cos \phi-y \sin \phi)+T_{c} \sin \phi+m_{x_{k}} \cos \phi-m_{y_{e}} s\right.$
$\phi] \frac{\cos \phi d^{\prime} s}{E I}+\sum\left[M_{c} \cos \phi-V_{c}(x \cos \phi-y \sin \phi)+T_{c} \sin \phi+m_{x_{p}} \cos \phi-m_{r_{p}}\right.$ si
$\left.\cos \phi+m_{x_{k}} \sin \phi+m_{y_{k}} \cos \phi\right](x \sin \phi+y \cos \phi) \frac{d s}{E I}-\sum\left[M_{c} \cos \phi-v_{c}(x \cos \phi-y \sin \phi)+\right.$
$\left.(x \sin \theta+y \cos \theta) \frac{d s}{E I}-\sin \theta(x \cos \theta-y \sin \theta) \frac{d s}{G K}\right]=0$

$$
\left.+\left(m_{y_{L}}-m_{y_{2}}\right) \cos \theta\right\}(x \sin \theta+y \cos \theta) \frac{d s}{E I}+\sum\left\{\left(m_{x_{L}}-m_{x_{k}}\right) \cos \theta+\left(-m_{y_{L}},\right.\right.
$$

$$
\left.\left.y \sin \theta)^{2} \frac{d s}{G K}\right]\right\}\left\{z \sum\left(\frac{\cos ^{2} \theta d s}{E Z}+\frac{\sin ^{2} \theta d s}{G K}\right)\right\}
$$

$$
\frac{1 y \sin \theta \cos \theta\left(\frac{d s}{E I}-\frac{d s}{G K}\right)+\left(m_{y_{2}}-m_{y_{z}}\right) x \sin \theta \cos \theta\left(\frac{d s}{E I}-\frac{d s}{G K}\right)+\left(m_{y_{k}}-m_{y_{z}}\right) y\left(\frac{c o}{G K}\right.}{\left.\left\{\frac{\cos ^{2} \theta d s}{E I}+\frac{\sin ^{2} \theta d s}{G K}\right)\right\}}
$$

$$
\left.\left.\left.\frac{\cos ^{2} \theta d s}{G K}\right)+2 x y \sin \theta \cos \theta\left(\frac{d s}{E I}-\frac{d s}{G K}\right)+y^{2}\left(\frac{\cos ^{2} \theta d s}{E I}+\frac{\sin ^{2} \theta d s}{G K}\right)\right]\right\}\left\{\left[\left[\left(m_{x_{L}}-m_{x_{R}}\right) \sin \theta\right.\right.\right.
$$

$$
\left.\left.\frac{\cos ^{2} \theta d s}{E I}+\frac{\sin ^{2} \theta d s}{G K}\right)\right\}
$$

$$
\begin{align*}
& \left.i n \phi+m_{x_{k}} \cos \phi-m_{y_{k}} \sin \phi\right] \frac{\cos \phi d s}{G K}=0 \\
& \left.\therefore \phi+m_{x_{k}} \cos \phi-m_{y_{k}} \sin \phi\right] \frac{\sin \phi d s}{G K}=0 \\
& \left.\sin -V_{c}(x \cos \phi-y \sin \phi)+T_{e} \sin \phi+m_{x_{p}} \cos \phi-m_{y_{k}} \sin \phi\right](x \cos \phi-y \sin \phi) \frac{d s}{G K}=0 \tag{14}
\end{align*}
$$

(17)

$$
\left.\left.\left.-m_{x_{k}}\right) \cos \theta+\left(-m_{y_{1}}+m_{y_{k}}\right) \sin \theta\right\}(x \cos \theta-y \sin \theta) \frac{d s}{G K}\right\}
$$

$$
\left.\left.\left.\frac{d s}{G K}\right)+\left(m_{y_{2}}-m_{y_{2}}\right) y\left(\frac{\cos ^{2} \theta d s}{E I}+\frac{\sin ^{2} \theta d s}{G K}\right)\right]\right\}
$$

$$
\begin{equation*}
\left.\left.\left.\frac{d s}{}\right)\right]\right\}\left\{\left[\left[\left(m_{x_{L}}-m_{x_{R}}\right) \sin \theta \cos \theta\left(\frac{d s}{E T}-\frac{d s}{G K}\right)+\left(m_{y_{R}}-m_{y_{R}}\right)\left(\frac{\cos ^{2} \theta d s}{E I}+\frac{\sin ^{2} \theta d s}{G K}\right)\right]\right\} .\right. \tag{20}
\end{equation*}
$$

For a symmetrical structure the coefficients of $V_{c}$ and $T_{c}$, in equation (12), cancel so that one may solve directly for $M_{c}$. Then the two remaining equations (13) and (14) each have two unknowns which can readily be determined.

Let

$$
\begin{align*}
& \sin \theta \cdot \cos \theta\left(\frac{d s}{D I}-\frac{d s}{G K}\right)=b  \tag{21}\\
& \frac{\sin ^{2} \theta d s}{E I}+\frac{\cos ^{2} \theta d s}{G K}=c \tag{22}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\cos ^{2} \theta d \theta}{E I}+\frac{\sin ^{2} \theta d s}{G K}=d \tag{23}
\end{equation*}
$$

the expressions for $M_{c}, V_{c}$ and $T_{c}$ may be rewritten

$$
\begin{align*}
& M_{c}=-\frac{\sum\left(m_{x_{2}}+m_{x_{\varepsilon_{2}}}\right) c+\sum\left(m_{y_{2}}+m_{y_{g_{2}}}\right) b}{2 \sum c} \\
& V_{c}=\frac{-\left(\sum(x b+y d)\right)\left(\sum\left[\left(m_{x_{L}}-m_{x_{2}}\right) b+\left(m_{y_{L}}-m_{y_{2}}\right) d\right]\right)+\left(\sum d\right)\left(\sum\left[\left(m_{x_{2}}-m_{x_{2}}\right)(x c+y b)+\left(m_{x_{L}}-m_{y_{R}}\right)(x b+y d)\right]\right)}{2\left(\sum(x b+y d)\right)^{2}-2\left(\sum\left(x^{2} c+2 x y b+y^{2} d\right)\right)\left(\sum d\right)}  \tag{25}\\
& T_{c}=\frac{-\left(\sum(x b+y d)\right)\left(\sum\left[\left(m_{x_{2}}-m_{x_{e}}\right)(x c+y b)+\left(m_{y_{L}}-m_{y_{2}}\right)(x b+y d)\right]\right)+\left(\sum\left(x^{2} c+2 x y b+y^{2} d\right)\right)\left(\sum\left[\left(m_{x_{L}}-m_{x_{2}}\right) b+\left(m_{s_{2}}-m_{y_{g}}\right) d\right]\right)}{2\left(\sum(x b+y d)\right)^{2}-2\left(\sum\left(x^{2} c+2 x y b+y^{2} d\right)\right)\left(\sum d\right)} \tag{26}
\end{align*}
$$

If one is interested in drawing influence lines and loads only the left half of the structure $m_{x_{k}}=m_{y_{R}}=0$ and equations (24), (25), and (26) may be written

$$
\begin{align*}
& M_{c}=-\frac{\sum m_{x_{L}} c+\sum m_{y_{L}} b}{2 \sum c} \\
& V_{c}=\frac{-\left(\sum(x b+y d)\right)\left(\sum\left(m_{x_{L}} b+m_{y_{L}} d\right)\right)+\left(\sum d\right)\left(\sum\left[m_{x_{L}}(x c+y b)+m_{y_{L}}(x b+y d)\right]\right)}{2\left(\sum(x b+y d)\right)^{2}-2\left(\sum\left(x^{2} c+2 x y b+y^{2} d\right)\right)\left(\sum d\right)}  \tag{28}\\
& T_{c}=\frac{-\left(\sum(x b+y d)\right)\left(\sum\left[m_{x_{L}}(x c+y b)+m_{y_{L}}(x b+y d)\right]\right)+\left(\sum\left(x^{2} c+2 x y b+y^{2} d\right)\right)\left(\sum\left(m_{x_{L}} b+m_{y_{L}} d\right)\right)}{2\left(\sum(x b+y d)\right)^{2}-2\left(\sum\left(x^{2} c+2 \dot{x} y b+y^{2} d\right)\right)\left(\sum d\right)} . \tag{29}
\end{align*}
$$

To further simplify equations (28) and (29) tho following substitutions may be made:
let $\quad(x c+y b)=D$
and $\quad(x b+y d)=B$
Then

$$
\begin{align*}
M_{c} & =-\frac{\sum m_{x_{L}} c+\sum m_{y_{L}} b}{2 \sum c}  \tag{30}\\
V_{c} & =\frac{-\left(\sum B\right)\left(\sum\left(m_{x_{L}} b+m_{y_{L}} d\right)\right)+\left(\sum d\right)\left(\sum\left(m_{x_{L}} D+m_{y_{L}} B\right)\right)}{2\left(\sum B\right)^{2}-2\left(\sum(\times D+y B)\right)\left(\sum d\right)}  \tag{31}\\
T_{c} & =\frac{-\left(\sum B\right)\left(\sum\left(m_{x_{L}} D+m_{H_{L}} B\right)\right)+\left(\sum(\times D+y B)\right)\left(\sum\left(m_{x_{L}} b+m_{y_{L}} d\right)\right)}{2\left(\sum B\right)^{2}-2\left(\sum(x D+y B)\right)\left(\sum d\right)} \tag{32}
\end{align*}
$$

In order to facilitate the computations in the solum tions of an actual case the expressions for $b, c$ and $d$ may be rewritten as follows:

$$
\begin{align*}
b & =\sin \theta \cos \theta\left(\frac{d s}{E I}-\frac{d s}{G K}\right)=\frac{\sin 2 \theta}{2}\left(\frac{1}{E I}-\frac{1}{G K}\right) d s \\
& =\frac{\sin 2 \theta}{2 E I}(1-n) d s \tag{33}
\end{align*}
$$

where $n=\frac{E I}{G K}$

$$
\begin{align*}
c= & \sin ^{2} \theta \frac{d s}{E I}+\cos ^{2} \theta \frac{d s}{G K}=(1-\cos 2 \theta) \frac{d s}{2 \mathrm{EI}} \\
& +(1+\cos 2 \theta) \frac{d s}{2 G K} \\
= & \left(\frac{1}{E I}+\frac{1}{G K}\right) \frac{d s}{2}-\cos 2 \theta\left(\frac{1}{E I}-\frac{1}{G K}\right) \frac{d s}{2} \\
= & (1+n) \frac{d s}{2 E I}-(I-n) \frac{\cos 2 \theta d s}{2 E I} \tag{34}
\end{align*}
$$

and

$$
\begin{align*}
& \mathrm{d}= \frac{\cos ^{2} \theta \mathrm{ds}}{\mathrm{EI}}+\frac{\sin ^{2} \theta \mathrm{ds}}{\mathrm{GK}}=(1+\cos 2 \theta) \frac{\mathrm{ds}}{2 \mathrm{EI}} \\
&-(1-\cos 2 \theta) \frac{\mathrm{ds}}{2 \mathrm{GK}} \\
&=(1+n) \frac{d s}{2 \mathrm{II}}+(1-n) \frac{\cos 2 \theta \mathrm{ds}}{2 \mathrm{EI}} \tag{35}
\end{align*}
$$

In the case of a load ai the center of the beam, with the section $C$ taken at the center, $V_{c}$ and $T_{C}$ are equal to zero and the expression for $M_{c}$ may be simplified to

$$
M_{c}=-\frac{\sum m_{x_{L}} c+\sum m_{y_{L}} b}{2 \sum c}
$$

In the case of a unit load at $C$

$$
2 \mathrm{~m}_{\mathrm{x}_{\mathrm{L}}}=-\mathrm{x}
$$

and

$$
2 \mathrm{~m}_{\mathrm{y}_{\mathrm{L}}}=-\mathrm{y}
$$

and since

$$
\begin{align*}
& x c+y b=D \quad \text { we then have } \\
& M_{c}=\frac{\sum D}{2 \sum c} \tag{36}
\end{align*}
$$

For the case of an unsymmetrical beam, take the section $C$ at the right support. Then $M_{C}, T_{c}$ and $V_{c}$ are the bending moment, twisting moment and shear, respectively, at the right support. Expressions for $M_{c}, T_{c}$ and $V_{c}$ then may be written

$$
\begin{aligned}
& M_{c}=\frac{R}{N} \\
& T_{c}=\frac{S}{N}
\end{aligned}
$$

and

$$
V_{c}=\frac{Q}{N}
$$

where

$$
\begin{aligned}
\mathrm{N}= & \left(\sum \mathrm{c}\right)\left(\sum \mathrm{B}\right)^{2}+\left(\sum \mathrm{d}\right)\left(\sum \mathrm{D}\right)^{2}+\left(\sum \mathrm{b}\right)^{2}\left(\sum(x D+\mathrm{yb})\right) \\
& -\left(\sum \mathrm{c}\right)\left(\sum \mathrm{d}\right)\left(\sum(\mathrm{xD}+\mathrm{yB})\right)-2\left(\sum D\right)\left(\sum \mathrm{b}\right)\left(\sum \mathrm{B}\right)
\end{aligned}
$$

$$
\begin{aligned}
R= & F\left(\sum B\right)^{2}+H\left(\sum(x D+y B)\right)\left(\sum b\right)+J\left(\sum d\right)\left(\sum D\right) \\
& -F\left(\sum(x D+y B)\right)\left(\sum d\right)-H\left(\sum D\right)\left(\sum B\right)-J\left(\sum b\right)\left(\sum B\right) \\
S= & F\left(\sum(x D+y B)\right)\left(\sum b\right)+H\left(\sum D\right)^{2}+J\left(\sum c\right)\left(\sum B\right) \\
& -F\left(\sum B\right)\left(\sum D\right)-H\left(\sum(x D+y B)\right)\left(\sum c\right)-J\left(\sum b\right)\left(\sum D\right) \\
Q= & F\left(\sum \mathrm{D}\right)\left(\sum D\right)+H\left(\sum B\right)\left(\sum c\right)+J\left(\sum b\right)^{2}-F\left(\sum b\right)\left(\sum B\right) \\
& -H\left(\sum b\right)\left(\sum D\right)-J\left(\sum d\right)\left(\sum c\right) \\
H= & -\sum m_{x} c-\sum m_{y} b \\
H= & -\sum m_{x} b-\sum m_{y} d \\
J= & -\sum m_{x} D-\sum m_{y} B
\end{aligned}
$$

The other symbols are as previously defined.

In order to determine the bending moment and twisting moment at any section the above values of $M_{c}, T_{c}$ and $V_{c}$ should be substituted in equations (I) and (2).
IV. EXPERIMENTS ON $A$ CURVED SOD OF CIFGULAR-APC PLAN.
A. Tests

An application of the theory presented in Chapter III is demonstrated by the analysis and testing of a 3/4 inch round rod of medium open hearth steel. The rod was bent into a semimcircle with a center line radius of 14: inches and with 5 inches of each end left straight and then threaded. Fach and of the rod had two square head nuts for anchorage purposes. Each nut at the beeinnine of the arc had a hole drilled through it and through the rod, then a pin was driven into the hole so as to lock the nut on the rod and thus prevent turning.

The bent rod was fastened to a 15 inch channel
(a part of the steel framework in the laboratory) by means of two $3 / 8$ inch plates and eight $3 / 4$ inch bolts. As described above, the nuts on the test specimen were fixed in such a way as to simulate a fixed end condition when the rod was clamped in place. Loads were then applied at right angles to the plane of the axis of the rod.

Two Huggenberger tensometers wero used for measuring strains due to bending moment, and a troptometer on a 1 inch gage length for measuring angles of twist due to torque. (FAg. 4). The troptometer arm made contact with the plunger of a $\frac{1}{10,000}$ inch dial about $1 \frac{3}{4}$ inches from the axis of the rod.

A modulus of elasticity in tension of $30,000,000$ p.s.i. was obtained from tests of the coupon cut from the same piece as the rod. Using a 10 inch grage length the modulus of elasticity in shear was found to be 10,100,000 p.s.1.

At different times the gages were attached at the quarter-point and at the certer. The load, the maximum of which was slightly over 83 lbs., was placed at various points along the length of the rod and observations made. The results of these tests are shown in Figs. 5, 6, 8 and 9. The egages were also placed as near the support as possible and the results of the observations are shown in Fig. 15 (a) and (b).

The rod was later cut to form a subtended arc of $144^{\circ}$ and then tested. The results of the tests are shown in Flgs. 10, 11, 13 and 14.

B. Analytical

Tables I, II, III and IV indicate the procedure followed in obtaining information for drawing influence ilnes for bending moment, twisting moment and shear for the curved rod. This information is given in detail so that the form micht be followed in the case where the rod or beam has a non-circular plan. Each half of the rod was divided into 15 equal sections. The distances used in the computations were measured to the center of the sections. The values of $M_{c}, T_{c}$ and $V_{c}$ recorded in Tables III and IV were obtained by substituting the proper quantities in equations (30), (31) and (32).

Figures 5, 6, 7, 8 and 9 show influence lines drawn for bending moment, twisting moment and shear for an arc of $180^{\circ}$. Figures $10,11,12,13$ and 14 show the Influence lines for an are of $144^{\circ}$. The results of the tests are plotted in these figures for comparison with the theoretical values.
table i. computations of $x$ and y Distances.


| . $\gamma$ | $\sin \gamma$ | $\cos \gamma$ | $1-\cos \gamma$ | $x$ $r \sin \gamma$ | $\left.\begin{array}{c}Y \\ r(1-\cos \gamma\end{array}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $3^{\circ}$ | 0.05234 | 0.99863 | 0.00137 | 0.75893 | 0.01987 |
| $9^{\circ}$ | 0.15643 | 0.98769 | 0.01231 | 2.26824 | 0.17850 |
| $15^{\circ}$ | 0.25882 | 0.96593 | 0.03407 | 3.75289 | 0.49402 |
| $21^{\circ}$ | 0.35837 | 0.93358 | 0.06642 | 5.19637 | 0.96309 |
| $27^{\circ}$ | 0.45399 | 0.89101 | 0.10899 | 6.58286 | 1.58036 |
| $33^{\circ}$ | 0.54464 | 0.83867 | 0.16133 | 7.89728 | 2.33929 |
| $39^{\circ}$ | 0.62932 | 0.77715 | 0.22285 | 9.12514 | 3.23133 |
| $45^{\circ}$ | 0.70711 | 0.70711 | 0.29289 | 10.25310 | 4.24691 |
| $51^{\circ}$ | 0.77715 | 0.62932 | 0.37068 | 11. 26868 | 5.37486 |
| $57^{\circ}$ | 0.83867 | 0.54464 | 0.45536 | 12.16072 | 6.60272 |
| $63^{\circ}$ | 0.89101 | 0.45399 | 0.54601 | 12.91965 | 7.91715 |
| $69^{\circ}$ | 0.93358 | 0.35837 | 0.64163 | 13.53691 | 9.30364 |
| $75^{\circ}$ | 0.96593 | 0.25882 | 0.74118 | 14.00599 | 10.74711 |
| $81^{\circ}$. | 0.98769 | 0.15643 | 0.84357 | 14.32151 | 12.23177 |
| $87^{\circ}$ | 0.99863 | 0.05234 | 0.94766 | 14.48014 | 13.74107 |
| $90^{\circ}$ | 1.00000 | 0.00000 | 1.00000 | 14.50000 | 14.50000 |

Table II.

$$
\begin{array}{lll}
\text { RADIUS }=14.5^{\prime \prime} & \frac{1-n}{2}=-0.2425 & c=\frac{1+n}{2} \\
n=\frac{E I}{G K}=1.485 & \frac{1+n}{2}=+1.2425 & d=\frac{1+n}{2}
\end{array}
$$


ons of values for influence lines, MOMENT, TWISTING MOMENT, AND SHEAR.

1. 2425 $c=\frac{1+n}{2}-\frac{1-n}{2} \cos 2 \theta$
$B=x b+y d$
.2425 $d=\frac{1+n}{2}+\frac{1-n}{2} \cos 2 \theta \quad D=x c+y b$

| 2520 | C | d | $x b$ | yd | $B$ | D | YB | $\times \mathrm{D}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 117 | 1.00133 | 1.48367 | -0.01924 | 0.02948 | 0.01024 | 0.75944 | 0.00020 | 0.57636 |
| 063 | 1.01187 | 1.47313 | -0.16998 | 0.26295 | 0.09297 | 2.28179 | 0.01660 | 5.17565 |
| 301 | 1.03249 | 1.45251 | -0.45504 | 0.71757 | 0.26253 | 3.81492 | 0.12970 | 14.31698 |
| 221 | 1.06229 | 1.42271 | -0.84316 | 1.37020 | 0.52704 | 5.36378 | 0.50759 | 27.87219 |
| 254 | 1.09996 | 1.38504 | -1.29149 | 2.18886 | 0.89737 | 6.93083 | 1.41817 | 45.62468 |
| 863 | 1.14387 | 1.34113 | $-1.74956$ | 3.13729 | 1.38773 | 851522 | 3.24630 | 67.24708 |
| 042 | 1.19208 | 1.29292 | -2.16448 | 4.17785 | 2.01337 | 10.11143 | 6.50586 | 92.26021 |
| 000 | 1.24250 | 1.24250 | -2.48638 | 5.27679 | 2.79041 | 11.70960 | 11.85062 | 120.05 |
| 1042 | 1.29292 | 1.19208 | -2.67293 | 6.40726 | 373433 | 13.29458 | 20.07150 | 149.81237 |
| 1863 | 1.34113 | 1.14387 | -2.69409 | 755265 | 4.85856 | 14.84634 | 3207971 | 180.54218 |
| 254 | 1.38504 | 1.09996 | -2.53471 | 8.70855 | 6.17384 | 16.34097 | 48.87922 | 211.11961 |
| 021 | 1.42271 | 1.06229 | -2.19650 | 9.88316 | 7.68666 | $17: 74949$ | 71.51392 | 240.27325 |
|  | 14.22819 | 15.59181 |  |  | 30.43505 | 111.71839 | 196.21939 | 1154.88826 |
| 001 | 1.45251 | 1.03249 | $-1.69823$ | 11.09628 | 9.39805 | 19.04075 | 10100188 | 266.68455 |
| 3063 | 1.47313 | 1.01187 | -1.07325 | 12.37696 | 11.30371 | 20.18080 | 138.26438 | 289.01953 |
| $+117$ | 1.48367 | 1.00133 | -0.36707 | 13.75935 | 13.39228 | 21.13541 | 184.02426 | 306.04370 |
|  | 18.63750 | 18.63750 |  |  | 64.52909 | 172.07535 | 61950991 | 2016.63604 |

Table II (Continued).

LOAD AT 1

| $u$ $u$ 0 | $m_{x_{L}}$ | $m_{y_{2}}$ | $m_{x_{L}} b$ | $m_{x_{L}} C$ | $m_{x_{L}} D$ | $m_{y_{L}} b$ | $m_{y_{L}} d$ | $m_{y_{L}} B$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0. | O. |  |  |  |  |  |  |
| 2 | $-1.50931$ | -0.15863 | 0.11311 | $-1.52723$ | $-3.44393$ | 0.01189 | -0.23368 | -0.01475 |
| 3 | -2.99396 | -0.47415 | 0.36302 | -3.09123 | $-11.42172$ | 0.05749 | -0.68871 | -0.12448 |
| 4 | -4.43744 | -0.94322 | 0.72002 | $-4.71385$ | -23.80145 | 0.15305 | $-1.34193$ | -0.49711 |
| 5 | -5.82393 | $-1.56049$ | 1.14260 | -6.40609 | -40.36467 | 0.30615 | -2.16134 | -1.40034 |
| 6 | -7.13835 | $-2.31942$ | 1.58143 | -8.16534 | $-60.78462$ | 0.51384 | $-3.11064$ | -3.21873 |
| 7 | $-8.36621$ | $-3.21146$ | 1.98447 | -9.97319 | -84.59435 | 0.76176 | $-4.15216$ | $-6.46586$ |
| 8 | -9.49417 | -4.22704 | 2.30234 | $-11.79651$ | -111.17293 | 1.02506 | $-5.25210$ | $-11.79517$ |
| 9 | $-10.50975$ | $-5.35499$ | 2.49291 | $-13.58827$ | -139.72271 | 1.27020 | -6.38358 | -19.99730 |
| 10 | $-11.40179$ | $-6.58285$ | 2.52595 | $-15.29128$ | -169.27485 | 1.45836 | -7.52992 | $-31.98317$ |
| 11 | $-12.16072$ | $-7.89728$ | 2.38581 | -16.84308 | -198.71796 | 1.54937 | $-8.66669$ | -48.75654 |
| 12 | $-12.77798$ | $-9.28377$ | 2.07336 | $-18.17936$ | -226.80263 | 1.50638 | $-9.86206$ | -71.36118 |
| $\Sigma$ |  |  | 17.68502 | -109.57543 | -1070.10182 | 8.61355 | -49.40281 | -195.61463 |
| 13 | $-13.24706$ | $-10.72724$ | 1.60621 | -19.24149 | -252.23396 | 1.30068 | $-11.07577$ | -100.81514 |
| 14 | $-13.56258$ | $-12.21190$ | 1.01638 | -19.97944 | $-273.70371$ | 0.91516 | -12.35686 | -138.03978 |
| 15 | $-13.72121$ | $-13.72120$ | 0.34783 | $-20.35775$ | -290.00340 | 0.34783 | -13.73945 | -183.75815 |
| $\Sigma$ |  |  | 20.65544 | $-169.15411$ | -1886.04289 | 11.17722 | -86.57489 | -618.22770 |

> Table II (Continued).

LOAD AT 2

| $u$ <br> $山$ | $m_{x_{L}}$ | $m_{y_{L}}$ | $m_{x_{L}} b$ | $m_{x_{L}} C$ | $m_{x_{L}} D$ | $m_{y_{L}} b$ | $m_{y_{L}}{ }^{\prime}$ | $m_{y_{L}} B$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 |  |  |  |  |  |  |
| 2 | 0 | 0 |  |  |  |  |  |  |
| 3 | -1.48465 | -031552 | 0.18001 | -1.53289 | -5.66382 | 0.03826 | -0.45830 | -0.08283 |
| 4 | -292813 | -0.78459 | 0.47512 | -3.11052 | -15.70585 | 0.12731 | -1.11624 | -0.41351 |
| 5 | -4.31462 | -1.40186 | 0.84649 | -4.74591 | -29.90390 | 0.27503 | -1.94163 | -1.25799 |
| 6 | -5.62904 | -2.16079 | 1.24706 | -6.43889 | -47.93251 | 0.47870 | -2.89790 | -2.99859 |
| 7 | -6.85690 | -3.05283 | 1.62646 | -8.17397 | -69.33306 | 0.72413 | -3.94706 | -6.14648 |
| 8 | -7.98486 | -4.06841 | 1.93633 | -9.92119 | -93.49952 | 0.98659 | -5.05500 | -11.35253 |
| 9 | -9.00044 | -5.19636 | 2.13490 | -11.63685 | -119.65707 | 1.23258 | -6.19448 | -19.40492 |
| 10 | -9.89248 | -6.42422 | 2.19158 | -13.26710 | -146.86712 | 1.42322 | -7.34847 | -31.21246 |
| 11 | -10.65141 | -7.73865 | 2.08970 | -14.75263 | -174.05437 | 1.51825 | -8.51221 | -47.77719 |
| 12 | -11.26867 | -9.12514 | 1.82845 | -16.03205 | -200.01315 | 1.48065 | -9.69354 | -70.14185 |
| $\Sigma$ |  |  | 14.55610 | -89.61200 | -902.63037 | 8.28472 | -4716483 | -190.78835 |
| 13 | -11.73775 | -10.56861 | 1.42320 | -17.04920 | -223.49556 | 1.28144 | -10.91198 | -99.32433 |
| 14 | -12.05327 | -12.05327 | 0.90327 | -17.75603 | -243.24463 | 0.90327 | -12.19634 | -136.24667 |
| 15 | -12.21190 | -13.56257 | 0.30957 | -18.11843 | -258.10351 | 0.34381 | -13.58061 | -181.63373 |
| $\Sigma$ |  |  | 17.19214 | -142.53566 | -1627.47407 | 10.81324 | -83.85376 | -607.99308 |

Table II (Continued).

LOAD AT 3


Table II (Continued).

LOAD AT 4

| 0 $山$ $\sim$ | $m_{x_{L}}$ | $m_{y_{L}}$ | $m_{x_{L}} b$ | $m_{x_{L}} C$ | $m_{x_{L}} D$ | $m_{y_{L}}{ }^{\text {b }}$ | $m_{y_{L}} d$ | $m_{y_{2}} B$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | O. | O. |  |  |  |  |  |  |
| 2 | 0. | 0 |  |  |  |  |  |  |
| 3 | O. | 0. |  |  |  |  |  |  |
| 4 | O. | 0 |  |  |  |  |  |  |
| 5 | $-1.38649$ | -0.61727 | 0.27202 | $-1.52508$ | $-9.60953$ | 0.12110 | -0.85494 | -0.55392 |
| 6 | -2.70091 | $-1.37620$ | 0.59836 | -3.08949 | -22.99884 | 0.30488 | $-1.84566$ | -1.90979 |
| 7 | -3.92877 | $-2.26824$ | 0.93190 | $-4.68341$ | -39.72548 | 0.53803 | -2.93265 | -4.56681 |
| 8 | -5.05673 | $-3.28382$ | 1.22626 | -6.28299 | -59.21229 | 0.79633 | -4.08015 | -9.16320 |
| 9 | -6.07231 | -4.41177 | 1.44035 | $-7.85101$ | -80.72081 | 1.04647 | -5.25918 | -16.47501 |
| 10 | -6.96435 | -5.63963 | 1.54288 | $-9.34010$ | -103.39511 | 1.24940 | -6.45100 | -27.40048 |
| 11 | -7.72328 | -6.95406 | 1.51523 | -10.69705 | -126.20589 | 1.36432 | -7.64919 | -42.93325 |
| 12 | $-8.34054$ | -8.34055 | 1.35334 | $-11.86617$ | -148.04.033 | 1.35334 | -8.86008 | -64.11097 |
| $\Sigma$ |  |  | 8.88034 | $-55.33530$ | -589.91628 | 6.77387 | -37.93285 | $-167.11343$ |
| 13 | -8.80962 | $-9.78402$ | 1.06817 | -12.79606 | -1.67.74177 | 1.18631 | -10.10190 | -91.95071 |
| 14 | -9.12514 | -11.26868 | 0.68384 | -13.44252 | $-184.15263$ | 0.84447 | -11.40244 | -127.37789 |
| 15 | $-9.28377$ | $-12.77798$ | 0.23534 | $-13.77405$ | -196.21629 | 0.32392 | -12.79497 | -171.12629 |
| $\Sigma$ |  |  | 10.86769 | -95.34793 | -1138.02697 | 9.12857 | -72.23216 | -557.56832 |

Table II (Continued).

Load at 6

| $\begin{aligned} & u \\ & w \\ & v \end{aligned}$ | $m_{x_{L}}$ | $m_{y_{2}}$ | $m_{x_{L}} b$ | $m_{x_{L}} C$ | $m_{x_{L}} D$ | $m_{y_{L}} b$ | $m_{y_{L}} d$ | $m_{y_{L}} B$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | O. | 0. |  |  |  |  |  |  |
| 2 | O. | 0. |  |  |  |  |  |  |
| 3 | 0. | O. |  |  |  |  |  |  |
| 4 | O. | O. |  |  |  |  |  |  |
| 5 | O. | O. |  |  |  |  |  |  |
| 6 | 0. | O. |  |  |  |  |  |  |
| 7 | $-1.22786$ | -0.89204 | 0.29125 | -1.46371 | $-12.41542$ | 0.21159 | $-1.15334$ | $-1.79601$ |
| 8 | -2.35582 | $-1.90762$ | 0.57129 | -2.92711 | -27.58571 | 0.46260 | -2.37022 | -5.32304 |
| 9 | -3.37140 | -3.03557 | 0.79970 | $-435895$ | -44.82135 | 0.72004 | -3.61864 | $-11.33582$ |
| 10 | $-4.26344$ | -4.26343 | 0.94452 | $-5.71783$ | -63.29648 | 0.94452 | $-4.87681$ | -20.71413 |
| 11 | -5.02237 | $-5.57786$ | 0.98534 | $-6.95618$ | -82.07040 | 1.09432 | $-6.13542$ | $-34.43682$ |
| 12 | $-5.63963$ | $-6.96435$ | 0.91509 | -8.02356 | -100.10056 | 1.13004 | -7.39816 | -53.53259 |
| $\Sigma$ |  |  | 4.50719 | -29.44734 | -330.28992 | 4.56311 | -25.55259 | -127.13841 |
| 13 | $-6.10871$ | $-8.40782$ | 0.74068 | -8.87296 | $-116.31442$ | 1.01945 | -8.68099 | -79.01711 |
| 14 | -6.42423 | -989248 | 0.48143 | -9.46373 | $-129.64610$ | 0.74134 | -10.00990 | -11182173 |
| 15 | $-6.58286$ | $-1140178$ | 0. 16688 | $-976679$ | -139.13145 | 0.28904 | -11.41694 | -152.69583 |
| $\Sigma$ |  |  | 5.89618 | $-57.55082$ | $-715.38189$ | 6.61294 | $-55.66042$ | -470.67308 |

Table II (Continued).
LOAD AT 8

| 0 $山$ 0 | $m_{x_{L}}$ | $m_{y_{L}}$ | $m_{x_{L}} \mathrm{~b}$ | $m_{x_{L}} C$ | $M_{x_{L}} D$ | $m_{y_{L}} b$ | $m_{y_{L}}{ }^{d}$ | $m_{y_{L}} B$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | O. | 0. |  |  |  |  |  |  |
| 9 | -1.01558 | -1.12795 | 0.24090 | $-1.31306$ | -13.50171 | 0.26755 | $-1.34461$ | -4.21214 |
| 10 | $-1.90762$ | $-2.35581$ | 0.42261 | -2.55837 | $-28.32118$ | 0.52191 | -2.69474 | -11.44584 |
| 11 | $-2.66655$ | $-3.67024$ | 0.52315 | -3.69328 | $-43.57401$ | 0.72006 | $-4.03712$ | -22.65947 |
| 12 | $-3.28381$ | $-5.05673$ | 0.53283 | $-4.67191$ | -58.28595 | 0.82051 | $-5.37171$ | -38.86936 |
| $\Sigma$ |  |  | 1.71949 | -12.23662 | -143.68285 | 2.33003 | -13.44818 | $-77.18681$ |
| 13 | $-3.75289$ | -6.50020 | 0.45504 | $-5.45111$ | $-71.45784$ | 0.78815 | $-6.71139$ | -61.08920 |
| 14 | -4.06841 | $-7.98486$ | 0.30489 | -5.99330 | -82.10377 | 0.59839 | -8.07964 | -90.25854 |
| 15 | -4.22704 | -9.49416 | 0.10716 | $-6.27153$ | -89.34022 | 0. 24068 | $-9.50679$ | -127.14845 |
| $\Sigma$ |  |  | 2.58658 | -29.95256 | -386.58468 | 3.95725 | -37.74600 | -355.68300 |

LOAD AT 9

| 9 | 0. | 0. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | -0.89204 | -1.22786 | 0.19762 | -1.19634 | -13.24353 | 0.27202 | -1.40451 |
| 11 | -1.65097 | -2.54229 | 0.32390 | -2.28666 | -26.97845 | 0.49877 | -2.79642 |
| 12 | -2.26823 | -3.92878 | 0.36804 | -3.22703 | -40.25993 | 0.63748 | -4.17350 |
| $\Sigma$ |  |  | 0.88956 | -6.71003 | -80.48191 | 1.40827 | -8.37443 |
| 13 | -2.73731 | -5.37225 | 0.33190 | -3.97597 | -52.12044 | 0.65139 | -5.54679 |
| 14 | -3.05283 | -6.85691 | 0.22878 | -4.49722 | -61.60855 | 0.51386 | -6.93830 |
| 15 | -3.21146 | -8.36621 | 0.08141 | -4.76475 | -67.87552 | 0.21208 | -8.37734 |
| $\Sigma$ |  |  | 1.53165 | -19.94797 | -262.08642 | 2.78560 | -2923686 |
| $\mathbf{\Sigma}$ |  |  |  |  |  |  |  |

Table II (Continued).

Load at II

| $\dot{\sim}$ | $m_{x_{L}}$ | $m_{y_{2}}$ | $m_{x_{L}} \mathrm{~b}$ | $m_{x_{L}} \mathrm{C}$ | $M_{x_{2}} \mathrm{D}$ | $m_{y_{L}} \mathrm{~b}$ | $m_{y_{L}} d$ | $m_{y_{L}} B$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | O. | 0. |  |  |  |  |  |  |
| 12 | -0.61726 | $-1.38649$ | 0.10016 | -0.87818 | -10.95605 | 0.22497 | $-1.47285$ | -10.65748 |
| $\Sigma$ |  |  | 0.10016 | -0.87818 | -10.95605 | 0.22497 | -1.47285 | -10.65748 |
| 13 | -1.08634 | -2.82996 | 0.13172 | $-1.57792$ | -20.68473 | 0.34313 | -2.92191 | -26.59611 |
| 14 | $-1.40186$ | -4.31462 | 0.10506 | -2.06512 | -28.29066 | 0.32334 | -4.36583 | $-48.77121$ |
| 15 | $-1.56049$ | $-5.82392$ | 0.03956 | $-2.31525$ | -32.98160 | 0.14764 | $-5.83167$ | -77.99557 |
| $\Sigma$ |  |  | 0.37650 | $-6.83647$ | -92.91304 | 1.03908 | -14.59226 | $-164.02037$ |
| LOAD AT 13 |  |  |  |  |  |  |  |  |
| 13 | 0. | 0. |  |  |  |  |  |  |
| 14 | $-0.31552$ | $-1.48466$ | 0.02365 | -0.46480 | $-6.36745$ | 0.11126 | $-1.50228$ | $-16.78217$ |
| 15 | -0.47415 | -2.99396 | 0.01202 | -0.70348 | $-10.02135$ | 0.07590 | -2.99794 | -40.09595 |
| $\Sigma$ |  |  | 0.03567 | $-1.16828$ | -16.38880 | 0.18716 | -4.50022 | -56.87812 |

Table III. Values. of influence ordin, AND TWISTING MOMENT AT $\frac{1}{4}$ poIr

$$
\begin{array}{ll}
\theta=45^{\circ} & \sin \theta=0.70711, \quad \cos \theta=0.70711, \quad x=10.2 \\
\frac{1}{4}-\text { point } & x \sin \theta=7.25007, \quad x \cos \theta=7.25007, \\
& x \sin \theta+y \cos \theta=10.25310, \quad x \cos \theta
\end{array}
$$

|  | Unit |  |  |  | Load |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | 1 | 2 | 3 | 4 |
| $M_{c}$ | $+461637$ | $+423815$ | $+3.53381$ | $+2.89045$ | $+2.3130$ |
| $M_{c} \operatorname{Sin} \theta$ | $+3.26429$ | $+2.99684$ | $+249879$ | +204387 | $+1.6355$ |
| $M_{c} \operatorname{Cos} \theta$ | $+3.26429$ | $+2.99684$ | $+2.49879$ | $+2.04387$ | $+1.635 \mathrm{~S}$ |
| $V_{c}$ |  | $+0.47167$ | $+0.41597$ | +0.36041 | +0.307: |
| $V_{c}(x \sin \theta+y \cos \theta)$ |  | $+4.83608$ | +4.26498 | $+3.69532$ | $+3.1513$ |
| $V_{c}(x \cos \theta-y \sin \theta)$ |  | $+200314$ | $+1.76659$ | $+1.53063$ | +1.305 |
| $T_{c}$ |  | $+0.13538$ | $+0.35000$ | $+0.49622$ | $+0.582$ |
| $T_{c} \operatorname{Sin} \theta$ |  | $+0.09573$ | $+0.24749$ | $+0.35088$ | $+0.4116$ |
| $\mathrm{T}_{\mathrm{c}} \operatorname{Cos} \theta$ |  | +0.09573 | +0.24749 | $+0.35088$ | $+0.4116$ |
| $M_{x_{L}}$ | $-5.12655$ | -9.49417 | $-7.98486$ | -6.50021 | -5.056 |
| $M_{x_{1}} \operatorname{Sin} \theta$ | -3.62503 | $-6.71342$ | -5.64617 | $-4.59636$ | -3.575 |
| $M_{x_{L}} \operatorname{Cos} \theta$ | $-3.62503$ | $-6.71342$ | $-5.64617$ | -4.59636 | $-3.575$ |
| My | -2.12346 | -4.22704 | -4.06841 | $-3.75289$ | -3.283 |
| $M_{y_{L}} \sin \theta$ | -1.50152 | -2.98898 | -2.87681 | $-2.65371$ | -2.322 |
| $M_{y_{L}} \operatorname{Cos} \theta$ | $-1.50152$ | -2.98898 | $-2.87681$ | $-2.65371$ | -2.322 |
|  |  |  |  |  |  |
| M $\frac{1}{4}$ Left | $-1.86226$ | $-1.77375$ | $-1.51172$ | $-1.16000$ | -0.6991 |
| $T_{\frac{1}{4}}$ Left | $-1.14078$ | $-1.17981$ | $-1.24853$ | $-1.28097$ | $-1.275$ |
|  |  |  |  |  |  |
| M车 Right | $-1.86226$ | $-1.93497$ | $-201368$ | -2.00233 | $-1.9274$ |
| $T_{\frac{1}{4}}$ Right | -1.14078 | -1.08943 | -0.97969 | -0.86412 | -0.74i8 |

LUENCE ORDINATES FOR BENDING MOMENT VENT AT $\frac{1}{4}$ POINT - ARC $180^{\circ}$.
$0.70711, \quad x=10.25310, \quad y=4.24891$ $j \theta=725007, y \sin \theta=3.00303, y \cos \theta=3.00303$ 310, $x \cos \theta-y \sin \theta=4.24691$

| Unit | LoAd At |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 4 | 6 | 8 | 9 | 11 | 13 |
| 2.89045 | +2.31306 | +1.36654 | +0.69739 | +0.46043 | +0.15553 | +0.02632 |
| 2.04387 | +1.63559 | +0.96629 | +0.49313 | +0.32557 | +0.10998 | +0.01861 |
| 2.04387 | +1.63599 | +0.96629 | +0.49313 | +0.32557 | +0.10998 | +0.01861 |
| 0.36041 | +0.30736 | +0.21009 | +0.12860 | +0.09493 | +0.04305 | +0.01198 |
| 3.69532 | +3.15139 | +2.15407 | +1.31855 | +0.97333 | +0.44140 | +0.12283 |
| 1.53063 | +1.30533 | +0.89223 | +0.54615 | +0.40316 | +0.18283 | +0.05088 |
| 0.49622 | +0.58210 | +0.60767 | +0.49800 | +0.41460 | +0.23234 | +0.07118 |
| 0.35088 | +0.41161 | +0.42969 | +0.35214 | +0.29317 | +0.16429 | +0.05033 |
| 0.35088 | +0.41161 | +0.42969 | +0.35214 | +0.29317 | +0.16429 | +0.05033 |
| 6.50021 | -5.05673 | -2.35582 |  |  |  |  |
| 4.59636 | -3.57566 | -166582 |  |  |  |  |
| 4.59636 | -3.57566 | -1.66582 |  |  |  |  |
| 3.75289 | -3.28382 | -1.90762 |  |  |  |  |
| -2.65371 | -2.32202 | -1.34890 |  |  |  |  |
| -2.65371 | -2.32202 | -0.63077 |  |  |  |  |
|  |  |  |  |  |  |  |
| -1.16000 | -0.69909 | +0.53533 | +2.16382 | +1.59207 | +0.71567 | +0.19177 |
| -1.28097 | -1.27567 | -1.11191 | -0.68714 | -0.43556 | -0.12852 | -0.01916 |
|  |  |  |  |  |  |  |
| -2.00233 | -1.92741 | -1.61747 | -1.17756 | -0.94093 | -0.49571 | -0.15455 |
| -0.86412 | -0.74187 | -0.50375 | -0.29908 | -0.21558 | -0.09144 | -0.01806 |

Table IV. Values of influence oroinates and twisting moment at $\frac{1}{4}$ point -

| $\theta=54^{\circ} \quad$ | $\sin \theta=0.80902, \cos \theta=0.58779, \quad x=8.52296$, |
| :--- | :--- |
| $\frac{1}{4}-$ point | $x \sin \theta=6.89525, x \cos \theta=5.00971, y \sin \theta$ |
|  | $x \sin \theta+y \cos \theta=8.52296, \quad x \cos \theta-y \sin$ |


influence ordinates for bending moment MOMENT AT $\frac{1}{4}$ POINT $\sim$ ARC $144^{\circ}$.
$5 \theta=0.58779, \quad x=8.52296, \quad y=2.76921$
$x \cos \theta=5.00971, y \sin \theta=2.24035, y \cos \theta=1.62771$
$3.52296, x \cos \theta-y \sin \theta=2.76921$ 洪

$d x \cos \theta-y \sin \theta=y$. Correct only to five significant figures

CAR








C. Discussion

In general, the test results on the rod showed close agreement with the analysis. For the $180^{\circ}$ aro the relatively high experimentul values for bending moment at $\mathbb{E}$ and at the quarter-point were probably due to the ends of the rod not beine perfectly fixed. Other slight dis. crepancies may be explained by the fact that the rod was cold bent, was not turned in a lathe to a perfect cirm cular section, and had mill scale on it except at the points of fastening the gages.
V. ANALYSIS OF CIRCULAK-ARC GURVED BEAM OF I-FORM

## A. General

Because of the shape of its cross-section the curved beam of I-form must have special treatment. It is a recognized fact (8) that when an I-beam is fixed at its ends and then twisted, direct stresses are produced in the edges of the beam. These atresses are caused by each flange acting as a beam. The bending moments induced in the top and bottom flanges by twisting are equal but of opposite signs.

In the case of a curved I-beam fixed at its ends this stress becomes of primary importance. It was found that it might be as much as seven times as great as the stress the designer would ordinarily compute due to the bending moment about the major axis of the I-beam. The redeeming feature of this condition is that the stresses caused by these induced bending moments are of a localized nature and the signs of these stresses are the same at diagonally opposite corners of the I-beam.

Since this is true one finds that the stress due to twisting may be either added to or subtracted from what we mifht call the ordinary bending stress.

The analysis used here is essentially that of Unold (14), but in this chapter the principles of analysis are extended to include non-symmetrical concentrated loads. The origin of coordinates is taken at the applied load. This means that the origin varies according to the position of the load.

> B. Notation

The following notation is used in Chapters $V$ and VI:
$v$ displacement of center line of top flange in circumferential direction; positive when movement is toward the origin.
$z$ displacement of center line of top flange in radial direction, positive for outward movement.
$y$ aisplacement of axis of I-beam in vertical direction; positive for upward movement.
$M$ bending moment at any section of I-beam; positive for compression in top rlange.
$T$ twisting moment developing shearing stresses on

I-boam; positive as shown in Fig. 16.
$V$ vertical shear at any section; positive as shown in Fig. 16.

97 bending moment in flange induced by twiat of I-beam; positive for compression on the inside of the top flange.

U shear accompanying $O M$.
$\theta$ angle of twist per unit length of I-beam.
$r$ radius of curved I-beam.
$x$ distance along axis of Imbeam.
If modulus of elasticity of I-beam.
P concentrated load on I-beam.
a one-half the depth of the beam.
I moment of inertia of the I-beam about the horizontal axis.

Is-2 moment of inertia of the I-beam about the vertical axis.

II one-half of $I_{2-2}$.
$G$ modulus of elasticity of I-beam in shear.
$K$ torsion constant, comparable to the polar moment of inertia for circular sections.
$C_{1}, C_{2}$, etc. and $D_{1}, D_{2}$, etc., constants of integration. The derivatives of functions such as $M, y, z$, etc.
with respect to $\phi$ are indicated by use of primes, es. $\frac{d M}{d \phi}=M^{\prime}$,
$\frac{d^{2} z}{d \phi^{2}}=z^{\prime \prime}$

$$
\frac{d^{4} y}{d \phi^{4}}=y^{\prime \prime \prime \prime}, \text { etc. }
$$

The sense of the moment when represented by an arrow-head on a vector is such as to direct the arrowhead away from the plane of the couple in the direction from which the rotation appears counter-clockwise.
C. Assumptions

The following assumptions are made:

1. Hooke's law applies.
2. The ends of the beam are fixed.
3. Angular deflections are small compared with the dimensions of the beam.
4. If is the moment of inertia of one flange about the vertical axis of the beam.
5. The transverse shear in each flange may be considered to act along the outside edge of the flange.

## D. Derivation

Figure 16 shows a portion of a curved I-beam with

Note:
$O$ indicates $V$ acts down

- indicates $V$ acts up


Fig. 16. Forces Acting on Elemental LENGTH OF I-BEAM.
the forces acting thereon. The beam is assumed to be loaded with a single concentrated load.

Then from

$$
\begin{aligned}
\text { EVertical Forces } & =0 \text { is obtained } \\
d V=0, \quad \therefore V & =\text { constant }
\end{aligned}
$$

Moments about the line $\alpha$ Eive

$$
\Sigma M_{\alpha}=0
$$

$T+V 2 a-(T+d T)-(V+d V) 2 a-(M+d M) d \phi=0$

Neglecting differentials higher than the first degree

$$
\begin{align*}
& M \alpha \phi+a T+d^{\ell} 2 a=0 \\
& M+T^{\prime}+U^{\prime} 2 a=0 \tag{37}
\end{align*}
$$

Moments about the line $\beta$ Eive

$$
\sum M_{\beta}=0
$$

$M-(M+d M)+(T+d T) d \phi+(V+d \vartheta) 2 a d \phi$
$-(V+d V) d x=0$

Since $d x=r d \phi$

$$
\begin{equation*}
\cdots M^{\prime}+T+V 2 a-v r=0 \tag{38}
\end{equation*}
$$

The coordinates at one point and at a distance $d x=r a \phi$ from this point are in the case of displacem
ments expressed by $y, v, z$ and $y+d y, \quad v+d v, \quad z+d z$.

Now

$$
\begin{equation*}
v=a \frac{d y}{d x}=\frac{a}{r} \frac{d y}{d \phi}=\frac{a}{r} y^{\prime} \tag{39}
\end{equation*}
$$

(See P1g. 17).

The middle fiber of the upper fiange shortens from the original length by a distance

$$
\Delta d x=v+d v-v-(r+z) d \phi+r d \phi=d v-z d \phi
$$

Therefore the unit strain is

$$
\varepsilon=\frac{\Delta d x}{d x}=\frac{d v}{d x}-z \frac{d \phi}{d x}=\frac{d v}{r d \phi}-\frac{z}{r}=\frac{v^{\prime}-z}{r}
$$

The corresponding bending moment is

$$
\begin{equation*}
M=\frac{(E E) I}{a}=\left(V^{\prime}-z\right) \frac{E I}{a r} \tag{40}
\end{equation*}
$$

The angle of twist, $d^{d}$, between the crossesection at I and the cross-section at II may be obtained by considering the displacements on the center line of the top flange. (F1gs. 17 and 18). The relative radial displacement between points 1 and 2 , which are a distance $d x$ apert, is add. Then


Fig. 17. Displacements $V, Y$ and z.

$$
d \delta=\frac{v d \phi+d z}{a}, \quad \delta^{\prime}=\frac{v}{a}+\frac{z^{\prime}}{a}
$$

and the rotation per unit length is

$$
\theta=\frac{d \delta}{d x}=\frac{d \delta}{r d \phi}=\frac{\delta^{\prime}}{r}
$$



Also

$$
\theta=\frac{T}{G K}
$$

Let

$$
\mathrm{q}=\frac{\mathrm{GK}}{\mathrm{EI}} \text { then }
$$

Fig. 18. Relative Displacements of points 1 and 2.

$$
\frac{\delta^{\prime}}{r}=+\frac{T}{E I} \frac{I}{q} \text { or }
$$

$$
\begin{equation*}
T=+\left(v+z^{\prime}\right) \frac{E I}{E r} q \tag{41}
\end{equation*}
$$

Let $\frac{I_{2 \cdot 2}}{2}=H$, Then from the formula; for the relation between change in curvature and bending moment In the case of curved beams, we have for the bending moment on the top flange

* For derivation see Appendix A.

$$
m=-\operatorname{EH}\left(\frac{d^{2} z}{d x^{2}}+\frac{z}{r^{2}}\right)
$$

or

$$
\begin{equation*}
9 \eta=-\frac{E H}{r^{2}}\left(z^{\prime \prime}+z\right) \tag{42}
\end{equation*}
$$



Fig. 19. 97 and 2.

The relation between $M$ and $V^{2}$ may be found by taking moments about the vertical axis through A shown in Fig. 19.

$$
\begin{align*}
& 9+\mathrm{a} M-9 \eta-(v+\mathrm{a} v) d x=0 \\
& \mathrm{~d} M=v \quad \mathrm{~d} x=v \mathrm{ra} \mathrm{\phi} \quad \text { or } \\
& v=\frac{m^{\prime}}{r} \tag{43}
\end{align*}
$$

The equations (37) to (43) form a system of simultaneous differential equations between the varilable $\phi$ and the terms $y, v, z, v, M, T, M$ and $V$. It is desirable to obtain a differential equation containing only $\phi$ and $y$. From equations (39) and (40) we have

$$
\begin{align*}
& M=\left(v^{\prime}-z\right) \frac{E I}{a r}=\left(\frac{Q}{r} y^{\prime \prime}-z\right) \frac{E I}{a r} \\
& z=\frac{a}{r} y^{\prime \prime}-\frac{a r}{E I} M \\
& z^{\prime}=\frac{a}{r^{\prime}} y^{\prime \prime \prime}-\frac{a r}{E I} M^{\prime} \tag{44}
\end{align*}
$$

From equations (39) and (41) we obtain
$T=+\left(\nabla+z^{\prime}\right) \frac{E I}{a r} q=+\left(\frac{a}{x} y^{\prime}+z^{\prime}\right) \frac{E I}{a r} q$
$z^{\prime}=\frac{a r}{B I q} T-\frac{a}{r} y^{\prime}$

Equating equations (44) and (45) and solvine for T

$$
\begin{align*}
& \frac{a}{r} y^{\prime \prime \prime}-\frac{a r}{E I} M^{\prime}=\frac{a r}{E I q} T-\frac{a}{r} y^{\prime} \\
& T=\frac{E I q}{r^{2}}\left(y^{\prime}+y^{\prime \prime \prime}\right)-M^{\prime} q \tag{46}
\end{align*}
$$

Now

$$
\begin{aligned}
& \vartheta=\frac{O M^{\prime}}{r}=-\frac{E H}{r^{\prime}}\left(z^{\prime}+z^{\prime \prime \prime}\right) \\
& =-\frac{\mathrm{BII}}{r^{3}}\left(\frac{a}{r} y^{\prime \prime \prime}-\frac{a r}{E I} M^{\prime}+\frac{a}{r} y^{(5)}-\frac{a r}{E I} M^{\prime \prime \prime}\right)
\end{aligned}
$$

$$
\begin{equation*}
\vartheta=-\frac{\mathrm{EHa}}{\mathrm{r}^{4}}\left(\mathrm{y}^{\prime \prime \prime}+\mathrm{y}^{(5)}\right)+\frac{\mathrm{Ha}}{\mathrm{Ir} r^{2}}\left(\mathrm{~m}^{\prime}+\mathrm{a}^{\prime \prime \prime}\right) \tag{47}
\end{equation*}
$$

From equations (37) and (38)

$$
\begin{gathered}
M+T^{\prime}+V^{\prime} 2 a=0 \\
-M^{\prime \prime}+T^{\prime}+V^{\prime} 2 a-v^{\prime} r=0 \\
M+m^{\prime \prime}+V^{\prime} r=0
\end{gathered}
$$

since $V=a$ constant, $V^{\prime}=0$ and

$$
\begin{equation*}
M+M^{\prime \prime}=0 \tag{48}
\end{equation*}
$$

Rewriting equation (47)

$$
\begin{equation*}
V=-\frac{\text { FHa }}{r^{4}}\left(y^{\prime \prime \prime}+y^{(5)}\right) \tag{49}
\end{equation*}
$$

Equation (37)

$$
M+T^{\prime}+v_{2 a}^{\prime}=0
$$

Substituting for $T^{\prime}$ (derivative of equation ( 4ic)) and $\vartheta^{\prime}$ (derivative of equation (49) ) we obtain

$$
\begin{equation*}
M+\frac{E I_{q}}{r^{2}}\left(y^{\prime \prime}+y^{\prime \prime \prime \prime}\right)-M^{\prime \prime} q-\frac{2 E H a^{2}}{r^{4}}\left(y^{\prime \prime \prime \prime}+y^{(6)}\right)=0 \tag{50}
\end{equation*}
$$

Differentiating equation (50) twice we have

$$
\begin{equation*}
M^{\prime \prime}+\frac{E I q}{r^{2}}\left(y^{\prime \prime \prime \prime}+y^{(6)}\right)-M^{\prime \prime \prime \prime} q-\frac{2 E H a^{2}}{r^{4}}\left(y^{(6)}+y^{(8)}\right)=0 \tag{51}
\end{equation*}
$$

Adding equations (50) and (51) and noting $M+n^{\prime \prime}=0 \quad$ we have

$$
\begin{equation*}
\frac{E I q}{r^{2}}\left(y^{\prime \prime}+2 y^{\prime \prime \prime \prime}+y^{(6)}\right)-\frac{2 E H a^{2}}{r^{4}}\left(y^{\prime \prime \prime \prime}+2 y^{(6)}+Y^{(8)}\right)=0 \tag{52}
\end{equation*}
$$

Let $\quad \frac{E I q}{r^{2}}=A, \quad \frac{2 E H a^{2}}{r^{4}}=B \quad$ and $\quad \sqrt{\frac{A}{B}}=\rho$ then

$$
\begin{equation*}
\left(y^{\prime \prime}+2 y^{\prime \prime \prime \prime}+y^{(6)}\right) A-\left(y^{\prime \prime \prime \prime}+2 y^{(6)}+y^{(8)}\right) B=0 \tag{53}
\end{equation*}
$$

The solution of equation (53) is

$$
\begin{align*}
y= & c_{1}+c_{2} \phi+c_{3} \sinh \rho \phi+{c_{4}}_{4} \cosh \rho \phi+c_{5} \sin \phi+c_{6} \cos \phi \\
& +c_{r} \phi \sin \phi+c_{8} \phi \cos \phi \tag{54}
\end{align*}
$$

The following is a summary of the equations used in determining the constants of integration:

$$
\begin{aligned}
& y=C_{1}+C_{2} \phi+C_{3} \sinh \rho \phi+C_{4} \cosh \rho \phi+C_{3} \sin \phi+C_{6} \cos \phi+C_{7} \phi \sin \phi+C_{\theta} \phi \cos \phi \\
& y^{\prime}=C_{2}+C_{3} \rho \cosh \beta \phi+C_{\alpha} \rho \sinh \rho \phi+C_{F} \cos \phi-C_{6} \sin \phi+C_{7}(\sin \phi+\phi \cos \phi)+C_{\theta}(\cos \phi-\phi \sin \phi) \\
& M=-\frac{A}{1+G}\left(y^{\prime \prime}+y^{\prime \prime \prime \prime}\right)+\frac{B}{1+G}\left(y^{\prime \prime \prime}+y^{(6)}\right)=\frac{2 B\left(1+\rho^{2}\right)}{1+\varphi}\left[C_{7} \cos \phi-C_{8} \sin \phi\right] \\
& T=A\left(y^{\prime}+y^{\prime \prime \prime}\right)-M_{q}^{\prime}=A\left(\bar{C}_{2}+C_{3} \rho\left(1+\rho^{2}\right) \cosh \rho \phi+C_{q} \rho\left(1+\rho^{2}\right) \sinh , \rho \phi-C_{7} 2 \sin \phi\right. \\
& \left.-C_{B} 2 \cos \phi\right]+\frac{2 B\left(1+\rho^{2}\right) q}{1+\theta}\left[C_{7} \sin \phi+C_{B} \cos \phi\right] \\
& 2^{c}=-\frac{B}{2 a}\left(y^{\prime \prime \prime}+y^{(\sigma)}\right)=-\frac{B}{2 a}\left[C_{3} \rho^{3}\left(1+\rho^{2}\right) \cosh \rho \phi+C_{4} \rho^{3}\left(1+\rho^{2}\right) \sinh \rho \phi \phi+C_{7} 2 \sin \phi+C_{8} 2 \cos \phi\right] \\
& m=-\frac{B r}{2 a}\left(y^{\prime \prime}+y^{\prime \prime \prime \prime}\right)=-\frac{B r}{2 a}\left(C_{3} \rho^{2}\left(1+\rho^{2}\right) \sinh \rho \phi+C_{\phi} \rho^{2}\left(1+\rho^{2}\right) \cosh \rho \phi-C_{7} z \cos \phi+C_{\theta} z \sin \phi\right] \\
& V=\frac{1}{r}\left[-M^{\prime}+7+2 Y 2 a\right]=\frac{1}{r}\left[A\left(y^{\prime \prime \prime}+y^{(5)}\right)-B\left(y^{(5)}+y^{(7)}\right)+A\left(y^{\prime}+y^{\prime \prime \prime}\right)-B\left(y^{\prime \prime \prime}+y^{(5)}\right)\right] \\
& =\frac{B P^{2} C_{2}}{r}=\frac{A}{r} C_{2} \\
& z=\frac{a}{r} y^{\prime \prime}-\frac{a r}{E T} M \\
& =\frac{a}{r}\left(C_{3} \rho^{2} \sinh \rho \phi+C_{\phi} \rho^{2} \cosh \rho \phi-C_{5} \sin \phi-C_{6} \cos \phi+C_{7}(2 \cos \phi-\phi \sin \phi)\right. \\
& \left.+C_{\theta}(-2 \sin \phi-\phi \cos \phi)\right]-\frac{z B \operatorname{ar}\left(1+\rho^{2}\right)}{(1+\phi) \varepsilon I}\left[C_{7} \cos \phi-C_{\theta} \sin \phi\right] \\
& z^{\prime}=\frac{C_{1}}{r}\left(C_{3} \rho^{3} \cosh \rho \phi+C_{4} \rho^{3} \sinh \rho \phi-C_{5} \cos \phi+C_{6} \sin \phi+C_{7}(-3 \sin \phi-\phi \cos \phi)\right. \\
& \left.+C_{\theta}(-3 \cos \phi+\phi \sin \phi)\right]+\frac{\left.2 B a r(1+1)^{2}\right)}{(1+g) \epsilon I}\left[C_{7} \sin \phi+C_{\theta} \cos \phi\right]
\end{aligned}
$$

The necessary boundary conditions for determining the constants of integration are tabulated below. The origin is to be taken under the load and $\phi$ is positive, measured in either direction.

$$
\begin{aligned}
& \text { When } \phi=\alpha \quad \phi=\beta \quad \phi=0 \\
& y=0 \\
& y=0 \\
& y^{\prime}=0 \quad y^{\prime}=0 \\
& V_{\alpha}+V_{\beta}=P \\
& z=0 \quad z=0 \\
& z^{\prime}=0 \\
& z^{\prime}=0 \\
& v_{\alpha}=-v_{\beta} \\
& \mathrm{X}_{\alpha}=\mathrm{X}_{\beta} \\
& y_{\alpha}^{\prime}=-y_{\beta}^{\prime} \\
& z_{\alpha}=z_{\beta} \\
& z_{\alpha}^{\prime}=-z_{\beta}^{\prime} \\
& m_{\alpha}=9 m_{\beta} \\
& M_{\alpha}=M_{\beta}
\end{aligned}
$$

The constants of integration are designated as $C$ for the $\alpha$ segment and $D$ for the $\beta$ segment.

The necessary boundary conditions for determining the constants of integration in the cage of symmetrical loading, 1.e., for $\alpha=\beta$, are
when

$$
\begin{array}{ll}
\phi=\alpha & \phi=0 \\
y=0 & V=\frac{P}{2} \\
y^{\prime}=0 & I=0 \quad \text { or } 20=0 \\
z=0 & y^{\prime}=0 \\
z^{\prime}=0 & z^{\prime}=0
\end{array}
$$

After the constants of integration are determined by the solution of simultaneous equations, the constants should be substituted in the equation for the particular function desired. The constants of integration are expressed in terms of the load $P$.

In the determination of the outer fiber stress the bending moment $M$ is substituted in the flexure formula; $S_{1}=\frac{M \theta}{I}$, and the bending moment $M$ is substituted in the flexure formula, $s_{2}=\frac{O M b}{H}$, where $b$ is one-half the width of the flange. The unit atress in the outer fiber is then $S=S_{1} \pm S_{2}$.
VI. EXPERIMENIS ON AN I-BEAM BEMT TO A SEMI-CIRCLE.
A. General

For the purpose of comparison of the analysis doveloped in Chapter $V$ with experimental values the straine, deflections and rotations were measured on a 6 inch 12.5 1b. Americon standard I-beam, bent in the shape of a semi-circle about the vertical axis with a 0 foot radius. Figure 20 is a general view of the experimental set-up.
B. Matorials

Since the I-beam was bent cold it had initial stresses and more or less permanent set. However, the berm was not tested until one year after the cold benaing, and it is possible that some gort of recovery had taken place in the interim. Later the beam was annealed and tested again.

The madulus of elasticity in tension and shear were determined from coupons cut from an 18 inch length


Fig. 20. General View of Experimental Set-up.
of I-beam from the same stock length as the curved beam.

## Q. Constants

The constants necessary for the analysis of this I-beam are listed below. The values of $E$ and $G$ were determined from coupons from the beam. The values I, $H$ and a may be found in any steel handbook. The value of $K$ was taken from the Bethlehem Manual of Steel Construction and was also checked by the membrane analogy. The beam was bent to the radius $r$.


The constants of integration are given in Table $V$.

Table $\mathbb{Z}$. Constants of Integration in Terms of $P$ to be used in Equation(54).

| CONSTANT | $\alpha=90^{\circ}, \beta=90^{\circ}$ | $\alpha=75^{\circ}, \beta=105^{\circ}$ | $\alpha=45^{\circ}, \beta=135^{\circ}$ |
| :---: | :--- | :--- | :--- |
| $C_{1}$ | -0.0480812 | -0.0433519 | -0.0166528 |
| $C_{2}$ | +0.0928224 | +0.124401 | +0.170947 |
| $C_{3}$ | -0.0000347487 | -0.0000355729 | -0.0000429580 |
| $C_{4}$ | +0.000034330 | +0.0000338351 | +0.0000265369 |
| $C_{5}$ | -0.137345 | -0.186165 | -0.255516 |
| $C_{6}$ | +0.0464008 | +0.0419313 | +0.0163286 |
| $C_{7}$ | +0.0254015 | +0.0226310 | +0.00788787 |
| $C_{8}$ | +0.0446281 | +0.0628516 | +0.0855084 |
| $D_{1}$ |  | -0.0433519 | -0.0166528 |
| $D_{2}$ |  | +0.0613636 | +0.0148180 |
| $D_{3}$ |  | -0.0000339245 | -0.0000265394 |
| $D_{4}$ |  | +0.0000338351 | +0.0000265369 |
| $D_{s}$ |  | -0.0885249 | -0.0191737 |
| $D_{6}$ |  | +0.0419313 | +0.0163286 |
| $D_{1}$ |  | +0.0226310 | +0.00788787 |
| $D_{\theta}$ |  | +0.0264047 | +0.00374785 |

## D. Method of Procedure

The beam was clamped into position, as shown in Fig. 20, between two 12 inch wide flange sections which In turn rested on two other 12 inch beams. The 4 foot straight onds of the curved beam were anchored so as to prevent, as much as posaible, any rotation of the supporting beams. This was to simulate fixed-end conditions.

The load was applied direct to the beam through a quarter-inch aquare steel bar 1 inch long, running tangential to the curve of the beam. A dynamometer consisting of a single spring, turnbuckie, and $\frac{1}{1000}$ inch dial was used to apply the load to the beam.

The beam was loaded at the center, at $\alpha=75^{\circ}$ and at $\alpha=45^{\circ}$. An initial load of about 125 l.bs. was placed on the beam for the zero readinga. The load was then increased 500 lbs. In 100 1b. increments. In all cases at least one check test was run.

Huggenberger tensometers were used for measuring strains at the odges of the beam, as shown in Fig. 21. These strains were produced by combinations of the bending moments $M$ and $O$.


FIg. 21.
Huggenberger Tensometers in Place.

A cinnometer or level bar built to measure the change in relative altitude of two points 8 inches apart was used to measure rotation of the beam and also of the supm ports. One-half inch square ateel bars were attached to the top and bottom flanges of the I-beam in groups of four at 9 different positions along the beam, as shown in FiE. 20. The changes of altitude of two points eight inches apart on each bar were measured and in this way the amount of twiat of the beam was obtained. These observam tions were corrected for the slight rotation observed at the supports.

To measure the deflections $\frac{1}{1000}$ inch dials were attoched, one at each of the supports and one at the center of the beam. The plungers of the dials made contact with plate glass which was supported by the floor. Corrections were made for deflection and rotation at the supports in detemmining the deflection at the center of the beam.

> E. Annealing of I-Beam.

After the first series of tests the Imbeam was annealed and the tests repeated. The annealing was done In the foundry at Iowa State College. A kiln of fire
brick was built around the beam. Openings were left for gas and air nozzles and also for inserting a pyrometer for temperature readings. The beam was heated uniformly to a temperature of about $1535^{\circ} \mathrm{F}$. and held at this temperature for two hours. The burners were then shut off and foundry sand piled on the kiln. The beam wes left this way to cool for 20 hours. During the annealing and subsequent handilng of the beam the diameter at the support deoreased $1 \frac{1}{4}$ inches. Figure 22 shows a general view during the annealing of the beam.

## F. Results

The results of the tests are shown in Figs. 23 to 40, inclusive. The stresses in the edge of the beam (Fig. 2l) are designated as follows: for the top flange I is used, for the bottom flange $B$, for the inside edge I and for the outside edge 0 . The top outside edge of the flange is then designated as $T 0$ and the bottom inside edge as $B I_{\text {. }}$

Figures 23 to 34, inclusive, show the theoretical stress along the edge of the beam for loads at $\alpha=90^{\circ}$, $\alpha=75^{\circ}$ and $\alpha=45^{\circ}$. The stress is shown for the beam


Fig. 22. General View During Annealing of Beam.
developed into a straight line. The experimental values for both before and after annealing the beam are also shown. There is very close agreement between the analytical and experimental values, and it seems to make little difference whether the beam was annealed or unannealed. However, there was one difference noticed during the testing. While testing the annealed beam the experimental results could be reproduced exactly each time, but with the unannealed beam the check tests in most instances varied slightiy from the first readings. This was probably due to the initial stresses oxisting in the beam. It will be noticed that there is a rapid increase In stress as one acproaches the support. This stress even though it reached the yield point of the material would probably do little, if any, damage inasmuch as it is of a localized nature. If the material did yield the vertical deflection would naturally be increased. Figures 35, 36 and 37 show the values of $z$, the radial displacement of the top flange. The experimental values are Ereater than the theoretical. This can be explained by the fact that the flanges of the beam had been warped slightly during the original bending; that the beam welghed 12.4 lbs. per foot instead of $22.5 \mathrm{lbs.g}$ and, that in the bending of the beam the
bulldozer altered the section at various points along the flanges, as can be seen in Fig. 21. In addition to this the section of the beam was reduced at various points by holes which were tapped $1 / 8$ inch in diameter and $3 / 16$ inch deop. This was nocessary in order to fasten the clinometer bars. All these frotors tend to increase the rotation and deflection of the beam over the theoretical values.

Figures 38, 39 and 40 show curves for twisting moment along the beam. The experimental values were obtained by using the difference in rotation of two bars placed 2 2 inches apart and from this rotation the angle of twist was determined. The twistine moment was computed by multiplying the angle of twist by the torsional. rigidity and dividing by the distance between the bars. In other words, the experimental value for twisting moment is taken as the product of the angle of twist per unit length of beam and the torsional rigidity. The experimental values are not in as close agreement with the theoretical values as might be desirable. One reason for these disarepancies is that the differences in readings were small for large readings of the cinometer. Large readings of the clinometer are likely to be in error, since the legs of the clinometer are rigid and
are perpendicular to its lensth. A difference between the zero reading and the one taken after the maximum loading, amount to 0.3 or 0.4 of an inch, is considered large. It will be notod that the theoretical values of $I$ are zero at the supports. Since the beam was firmly clamped at the supports the twisting tendency at the ends was absorbed by the flanges of the beam acting as short cuntilevers. The total twisting moment at these points is equal to the shear $2 e$ times the depth of the beam $2 a$.

For the load at $\alpha=75^{\circ}$ measurements of strains, $30^{\circ}$ from the load on the $\alpha$ segment, were made on the top and bottom flanges along four intersecting gage Iines each making an angle of $45^{\circ}$ with the adjacent one. The unit shearing stress determinod from the readirigs was $7510 \mathrm{p} . \mathrm{s} . \mathrm{i}$. ! lhe computed unit shearing stress at this point was 5390 p.s.i. The computed value was made up of two parts, one due to the pure torsion $I$. and the other due to the flange shear $2 e$. A undt shearing stress of 5120 p.s.1. In the flange was computed for $T$ by the method of Lyse and Johnston (8) and a unit shearing stress of 270 p.s.1. Was computed due to the shear 2e.

Teble VI gives the deflections at the center
of the beam. It will be seen that the annoaling of the beam reduced the deflections slightly. The measured deflections were greater than the theoretical values. This may be explained by the following facts: the flanges of the beam had been alightiy warped during the original bending; the beam was 0.1 Ib. Iighter than its nominal weight; the flanges wore reduced in width by the bulldozer; at certain points along the beam the section was reduced by the holos which it was nocessary to tap in order to fasten the clinometer bars; and, compression on the supporting beams would tend to increase the measured deflection.

In Appendix B are discussed the theoretical streases In the outor fibers and centel fiber of the flanges for quarter-point loads. Louds of 200 lbs . were placed on the beam spacea at 45 degrees.

Table VI. Detilections of Center of Beam Due to a Lond of 500 pounds.

| Deflection In Inches |  |  |  |
| :---: | :---: | :---: | :---: |
| $\alpha$ | Calculated | Before <br> Annealing | After <br> Annealing |
| $90^{\circ}$ | 0.82 | 1.17 | 1.05 |
| $75^{\circ}$ | 0.74 | 0.93 | 0.89 |
| $45^{\circ}$ | 0.28 | 0.36 | 0.36 |














"





## VII. CONCLUSIONS

## A. Analysis of Curved Beam by Method of Work Involving

 Only Bendine Moment, Twisting Moment and Shear, With Tests on a Curved Rod.1. This analysis may be used for boams of circular cross-section or of such cross sections that little or no bending moment $1 s$ induced in planes parallel to the plane of the axis of the beam when the beam is twisted.
2. This analysis may be used for a horizontally ourved beam of any plan.
3. This analysis may be used for unsymmetrical loads.
4. The computed bonding stresses are in close agreement with the experimental values in the case of a round steel rod used as a ourved beam and loaded perpendicularly to the plane of its axis.
5. The computed twisting moments are in close agreement with the experimentel values.
6. Analysis of the circular-Arc Eoam of I-form and

Tests on the I-leam.

1. The analysis givon is satisractory for computing stresses in a circularmarc beam of I-form.
2. This analysis may be used in the case of any cir-cular-arc fixed-end beam of I-form. To determine the constants of integration it is necessary to substitute the boundary conditions for the particular case in the equations on page 70 and solve the equations simultareously.
3. Relatively high stresses occur near and ati the flxed ends of a circularmarc curved boam of I-form.
4. The twisting moment producing pure torsion is zero at the supports.
5. The measured deflections of the $I$-beam are 20 to 43 percent ereater than the theoretical values. These relatively large discropancies may be accounted for by calling attention to the fact that about 95 percent of the deflection is due to the twisting of the heam. Tho irregularitios of this particular beam have a greater influence on the deflections due to twisting than the deflections due to bending.
6. The computed stresses in the outer fibers are in very close agreoment with the experimental values.
7. The experimental values of twisting moment producing pure torsion are in close agreement with the computed values, with the exception of a few values which were hicher than the computed values.
8. Upon comparing the boam in the annealed condition with the beam in the unannealed condition it is noted that there is very alicht difference in the observed readings for strain on the outer flbers.
9. In the case of check tests on the annealed beam the readings could be duplicated while for the beam In the unannealed condition they were slightly erratic. This would indicate that in the case of the annealed beam there was more uniformity in material structure.
10. The analysis shows that for quarter-point loads the stress at the supports due to the bending mament alone has a ratio to the outer fiber stress of about 1 to 7.
11. The working stress for the outer fibers can probably be taken just below the yield point of the material without serious damage except that the deflection might be excessive.

## VIII. SUMMARY

Two analyses of the curved beam are presented hore. The first analysis is developed by the method of work and involves only bending moment, twisting moment and shear. The beam may have any plan form, loaded with concentrated loads or distributed loads, and must have such a cross-section that there is littile or no bending moment induced in planes perallel to the plane of the axis of the beam when the beam is twisted. The second analysis pertains to a beam of I-form with a circulararc plan loaded with a single concentrated load.

Experiments were conducted in order that a comparison might be made with the theoretic results. Accompanying the first analyais are the results of testa made of a $3 / 4$ inch round steel rod bent into a circularmarc of $14 \frac{1}{2}$ inch radius. For comparison with the second analysis are the results of tests on a 6 inch 12.5 lb . Americen Standard $I$-beam bent in a semi-circle to a radius of $G$ feot. The experimental results for the beam bent cold are given together with the experimental results for the beam in the annealed condition.

## IX. LITTRATURE CITED

1. Andrée, W. I. Zur Berechnung gekrtuminter Trkger. Der E1senbau, 9:181-190. 1918.
2. Bethlohem Manual of Steel Construction. pp. 279-289. 1934.
3. Federhofer, K. Eerechnung des Senkrecht zu seiner Ebene belasteten Eogentrilgers. Ztechr. f. Math, und Physik, 62:40-63. 1914.
4. Gibson, A. H, and Ritchie, E. G. The Clrcular-Arc Bow Girder. Constable \& Co., London. 1914.
5. Grashof, F. Elasticit R. Geertner: Berlin. 1878.
6. Fialler, J. Beitrag zur Berechnung gekrumnter Trkger. Eautechnik, 10:372. 1932.
7. Kannenberg, $B_{n} G$ Zur Theorie torsionfester Ringe. Der Eisenbau, 4:329-334. 1913.
8. Lyse, I. and Johnston, B. G. Structural Beams in Torsion. Trans. 4m. Soc, Civil. Rner., 101:857-896. 1936.
9. Mayer, R. Woer Elastizitat und Stabilitat des geschzossenen und offenen Kreisbogens. Ztschr. f. Math. und Phys1k, 61:302-308. 1913.
10. Oesterblom, I. Bendine and Trosion in Horizontally Curved Bermis. Jour. Am. Conerete Inst., 3:597-606. 1932.
11. Pippard, A. J. S. and Barrow, F. L. The Stress Analysis of Bow Girders. Gt. Brit. Dept. of Sci. and Indus. Res. Bldg, Res. Bd. Tech. Paper No. 1. Royal Sta. Off., Iondon. 1926.
12. St. Hessler. Der nach einen Kreisbogen gekrikmme beiderseits eingespannte Eisenbetontrliger mit rechteckigem Querschnitt. Beton und Eisen, 26:425-4.33. 1927.
13. St. Heasler. Der kontinuionilohe, halbkreisfbrinig gebogene und gleichmbssig belastete Eisenbetontruger mit rechtockigen quepischnitt auf drei und vier gletch weit entfernten istitzen. Beton und Eisen, 29:149154. 1930.
14. Unold, Goorg. Jor Krointriger. Forschungoarbelten, Ver. Deut. Ing., No. 255. Berlin. 1922.
15. Young, C. R. and Hughes, C. A. Torsional Strength of Steel I-Bections. Tiriv. of Toronto, School of Enginearing Research Bul. No. 4, Sec. 3. pp. 131-144. 1924.
16. Worch, G. Deitrag zur Ermittlung der Formanderungen ebener stabzikge mit ramilcher stibtizung. Deton und Eisen, 29:167-173, 183-189, 200-205. 1930.

## X. ACKNOWLEDGMENP

The author wishes to express his appreciation to Professor R. A. Caughey, Chairman, and the other members of his Committee for the many helpful suggestions offered during the progress of the investigation. Acknowiedgment Is also due Professor H. L. Daasch of the Mechanical Engineering Department for supervising the annealing of the Imbeam, and to Doctor Archie Higcion of the Department of Theoretical and Applied Mechanics for his assistance in checking part of the mathematical solutyons.

## APPENDIX A

## Derivation of the Expression of the Relation Between Change in Curvature and Bending Moment In the Case of Curved Rods.

The following is the derivation of the expression for the bending moment ( $M$ ) in the flange due to the change in the curvature of the axis of the top flange. Figure 41 shows the points 1 and 2 in their original positions and $I^{\prime}$ and $2^{\prime}$ in their displaced positions.

$$
d x=r d \phi ; \quad \frac{d \phi}{d x}=\frac{d \phi}{r d \phi}=\frac{1}{r}
$$

The new curvature may be expressed as

$$
\begin{equation*}
\frac{1}{r_{I}}=\frac{d \phi+\Delta d \phi}{d x+\Delta d x} \tag{a}
\end{equation*}
$$

where $r_{1}$ is the new radius.

The angle between the tangent to the center line at

$I^{\prime}$ and the normal to the radius at $I^{\prime}$ is $\frac{d z}{d x}$. The corresponding angle ot $2^{\prime}$ is

$$
\frac{d z}{d x}+\frac{d^{2} z}{d x^{2}} d x
$$

Then

$$
\Delta d \phi=-\frac{d^{2} z}{d x^{2}} d x
$$

and

$$
\Delta d x=(r+z) d \phi-r d \phi=z d \phi=\frac{z d x}{r}
$$

Substituting in equation (a) we have

$$
\begin{aligned}
& \frac{1}{r_{1}}=\frac{d \phi-\frac{d^{2} z}{d x^{2}} d x}{d x+\frac{z d x}{r}}=\frac{\frac{1}{x}-\frac{d^{2} z}{d x^{2}}}{1+\frac{z}{x}} \\
& \frac{1}{r_{1}}\left(1+\frac{z}{r}\right)=\frac{1}{r}-\frac{d^{2} z}{d x^{2}} \\
& \frac{1}{r_{1}}+\frac{z}{r_{1} r}=\frac{1}{r}-\frac{d^{2} z}{d x^{2}} \\
& \frac{1}{r_{1}}-\frac{1}{r}=-\frac{z}{r_{1}}-\frac{d^{2} z}{d x^{2}}=-\left(\frac{z}{r^{2}}+\frac{d^{2}}{d x^{2}}\right)
\end{aligned}
$$

since $r^{2}$ can be taken equal to $r r_{1}$ for very small changes In the length of the radius. Also

$$
\frac{1}{r_{1}}-\frac{1}{r}=+\frac{9 m}{E H}
$$

The plus sign on the right side of the equation follows from the sign of the bending moment which is taken to be positive when it produces a decrease in the initial curvature.

We may then write

$$
-\frac{g m}{E H}=\frac{z}{r^{2}}+\frac{d^{2} z}{d x^{2}}=\frac{1}{x^{2}}\left(z+z^{\prime \prime}\right)
$$

## APPENDIX B

## Guaxter-point hoads.

In order to study the effect of geveral loads on the beam at one time the curves of Figs. 42, 43, 44 and 45 are plotted. The outer fiber stresses are obtained by the theoretical superposition of the previous individual loads at $\alpha=45^{\circ}, \quad \alpha=90^{\circ}$ and $\alpha=135^{\circ}$. To keep the stresses within worling limits loads of 200 1bs. each are placed at the quarter-pojnts. These flcures also show the stress due to the bending moment M. It is seen that this latter stress is very small compared with the outer fiber stress. In fact, on comparing the maximum values of each it is noted that they have a ratio of about 1 to $\%$

Unless it is necessary to keep within certain limits of deflections it would seem best to take the working stress for the outer fibers near the yield point. If the yleld point should be reached in the outer fibers the author believes little damage would be done excopt



that the deflection might be excessiven The reason for this belief is that although the stress due to the moment 9 is high it affects a localized portion of the boam. In other words this is another case of relatively high localized stress. As stated before, the stresses due to $9 M$ are of the same sign in the outer edges of the beam diagonally opposite one another.

